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ARTICLES 
Rick's Tricky S ix Puzzl e :  

Ss S i ts Speci a l l y  i n  56 
A L E X  F I N K  

University of California, Berkeley 
Berkeley, CA 94720 

R I C HA R D GUY 
The University of Calgary 

Calgary, Al berta, Canada T2N 1 N4 

Many of you will be familiar with the Fifteen Puzzle (FIGURE 1, left). Singmaster [16, 
§5A, pp. 77-84] gives nearly a hundred references to it. It is often associated with the 
name of Sam Loyd, but Sam continues to be a controversial figure [9, Chapter 2, pp. 
1 8-30;  17]. In the unlikely event that you've never seen the Fifteen Puzzle, you can 
read about it in the review quoted in the next section. 

Sliding block puzzles may be represented by graphs in which the vertices represent 
possible positions of the blocks and the edges represent the permissible moves of a 
block from one position to another. For example, the Fifteen Puzzle may be thought of 
as being played on the sixteen vertices of the graph in FIGURE 1 .  In this graph, don't  
think of the numbers as labels for the vertices, but as labeled blocks that can be slid 
from a vertex to an empty vertex. For example, in the figure, either block 12 or block 
15 may be slid onto the vertex where 0 indicates that there is no block. 

1 2 
5 6 
9 10 

13 14 

2 4 5 7 10 1 2 1 3  1 5  

3 4 
7 8 

11 12 
15 

1 3 6 8 9 1 1  14 0 
Figure 1 The F ifteen Puzzle and its b ipartite graph 

The notoriety of the puzzle derives from the impossibility of being able to swap the 
positions of 14 and 1 5  in the bottom row, while keeping all the other numbers fixed. 
This parity property was noted as early as 1879 [18, Chapter 1 ;  19] . 

How many people know Rick Wilson's general theorem on sliding block puzzles? 
We retain Rick's first name to avoid confusion with the well known theorem of Sir John 
Wilson, first proved by Lagrange, that if p is a prime then (p - 1 ) !  + 1 is divisible 
by p. 

83 
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The set of attainable positions in a sliding block puzzle of n pieces sliding on the 
edges of a graph with n + 1 vertices form a group. Rick Wilson's theorem [25] states 
that, apart from simple polygons, and the graph that is the subject of this article, the 
group of permutations of attainable positions is either Sn , the full symmetric group, if 
the graph contains an odd circuit, or An , the alternating group of even permutations, 
if the graph contains only even circuits . In the latter case the graph is bipartite, the 
vertices separate into two sets and there are no edges between members of the same 
set-the Fifteen Puzzle is the classical example. 

We mention that Rick Wilson's theorem applies only to nonseparable graphs, that 
is, graphs that are 2-connected, or without cut-points, so that there are always at least 
two paths between any pair of vertices that have no intermediate vertex in common. 

What is the exception? 

Math Reviews 48 #10882 offers a review by Derek Smith of Wilson's paper [25] , 
quoted here with permission from the AMS. 

The 1 5-puzzle consists of fifteen small movable square tiles numbered 1 ,  2 ,  
. . .  , 1 5  and one empty square, arranged in a 4 x 4 array. One is permitted to 
interchange the empty square with a tile next to it as often as desired. The chal
lenge is to move by a sequence of such interchanges from one position of the 
tiles to another specified position. The author generalizes this problem to an ar
bitrary simple graph and proves that for a finite simple nonseparable graph, with 
one exception, any position can be reached from any other position unless the 
graph is bipartite. In the bipartite case, the set of positions splits into two sets, 
with no position in one set reachable from a position of the other set. 

This might be misconstrued to read as though the exception is the set of bipar
tite graphs. In fact the exception is shown in FIGURE 2. It is a graph on 7 points 
with 8 edges. It contains two 5-circuits and a 6-circuit, so that we might expect to be 
able to obtain all 6! = 720 permutations of the six counters, labeled with the symbols 
0, 1, 2,  3, 4, oo. Why do we use oo instead of 5? Our labels represent the field lF5 with 
oo adjoined; this will make the connection with the automorphism group of the puzzle 
clearer. 

Figure 2 Rick's Tr icky Six Puzz le  
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A little experimentation reveals that there are many arrangements that cannot be 
attained. The 6! possible arrangements separate into six equivalence classes, with 5 !  
positions in each class. We shall see that 

oo01234, oo01243, oo01324, oo01342, oo01423, oo01432 

are representatives, one from each equivalence class.  Note that we always read a posi
tion clockwise, starting from twelve o 'clock. It is not possible to get from any one of 
these six positions to any other by sliding the disks along the eight edges of the graph. 

Not m u ch of a puzzle? 

John Conway tells us that he once made a copy of the Tricky Six Puzzle, and we made 
one that Art Benjamin helped us demonstrate at the 2006 MathFest, but we doubt if 
it will ever catch on commercially. However, it does have considerable mathematical 
interest. We shall see that it is related to the projective plane of order 4, to the Hoffman
Singleton graph, to the Steiner system S(S, 6, 1 2) ,  to a binary ( 12, 132, 4) code, to the 
ternary Golay code C12, and to shuffling a deck of cards [15, 6] . It is also related to 
the invariant theory of six points, to "mystic pentagons" and the two-colorings of the 
three-subsets of a six-element set [10] , and to the tetracode, the Minimog, and the 
Rubicon [5, pp. 320-330] , and to many other things that we don' t  have room for here. 

Many mathematicians are interested in word play, so we asked our favorite ana
grammatist, Andrew Bremner, to supply a set of six letters that had many anagrams. 
He suggested A, C, E, N, R, T. Among the 720 possibilities we found the following 
twenty words, names and acronyms. 

TABLE 1: Six equiva lence c lasses of anagrams 

RECANT ARCNET CARTEN CENTRA CARNET TANCER 

CANTER CRANET CRETAN CANTRE TRANCE 

CERANT NECTAR CREANT 

EN CART TARNEC NETCAR 

TERCAN TRACEN TANREC 

If you encode these anagrams with R = oo, E = 0, C = 1 ,  A= 2, N = 3, and 
T = 4, you will find that it's  possible to get from one word to any other in the same 
column of TABLE 1, but not to any word in a different column. For example, from 
RECANT, you can't CANTER to any of the other words. We list below four things 
you CAN do (have we always found the shortest sequence of moves?). If you want 
to follow along, and to avoid what Conway calls the "alias-alibi problem" (is it the 
counter? or the position it's  in?), then you should label six counters or slips of paper 
with the symbols oo, 0, 1 ,  2, 3, 4 and the letters R, E, C, A, N, T and slide them about 
on an improvised board. When we write a permutation (ABC . . . Z) this means that 
A ends up where B started, B ends up where C started, and so on, cyclically, with Z 
arriving where A started. By the usual convention, when we string together several 
such permutations it is the one on the right that acts first: they don't  act in the order in 
which you would normally read them. Compare the out-shuffle with the in-shuffle in 
the second example below. 

1 .  Cut the deck: swap the first three symbols oo, 0, 1 ,  with the last three, 2, 3, 4 
respectively. The moves 2 10oo431 0oo4310oo432 take RECANT into ANTREC. 
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This is the permutation (oo2)(03)(14). [In anticipation of the next section we will 
also write this as x --+ (x + 2) I (3x + 4) mod 5. Such a mapping is called a Mobius 
transformation.] 

2. Perform an out-shuffle, or an in-shuffle: cut the deck RECANT into REC and ANT 
and interleave letters alternately from each half. In an out-shuffle the top card re
mains on top: RAENCT = (0132) [x --+ 2x + 1 ] .  This can be achieved by the 
moves 234oo231 02oo413. An in-shuffle results in ARNETC = (oo02) (431)  [x --+ 
2/ (2x + 1 ) ]  and results from the moves oo01 2oo01 2oo341 2oo30. Note that shuf
fling one way then unshuffling the other performs a cut: (oo20) ( 134) (0132) = 
(oo2) (03) ( 14).  On the other hand, unshuffling then shuffling swaps alternate cards: 
(0132) (oo20) ( 1 34) = (oo0) ( 12) (34) [x--+ 2/x] .  

These manipulations of cards don't generate the whole group of the puzzle ; they 
only yield 4 !  of the 5 !  possible states, those in which the pairs of cards oo4, 03, 1 2, 
that are equidistant from the centre of the deck, remain so. It doesn't  take much exper
imentation to discover sequences of moves that break up these pairs and generate the 
whole group: 

3. Cycle the first four symbols. The moves 210oo2 followed by 1 0oo2 1 and Ooo2 10 
and oo2 1 0oo take RECANT --+ ARECNT --+ CARENT --+ ECARNT and back 
into RECANT. These are the transformations (oo01 2) [x --+ 1 / (2x + 1 ) ] ,  
(oo012)2 = (oo1 ) (02) [x --+ (2x + 1 )/ (2x + 3)] ,  (oo01 2)3 = (oo210) [x  --+ 
(2x + 3)/x] ,  and (oo01 2)4 = the identity [x --+ x].  

4.  Fix the first symbol and cycle the other five. The moves oo4321 04oo send RE
CANT to RTECAN, oo01234 to oo40123, the permutation (01234) [x --+ x + 1] .  
In fact, combined with the out-shuffle (0132) [x --+ 2x + 1] ,  this cycle allows 
us to apply any invertible linear polynomial mod 5 to the finite symbols 0, 1 ,  
2 ,  3, 4, yielding positions such as (041 2) [x --+ 3x + 4] , and its inverse (02 14) 
[x --+ 2x + 2]. These are illustrated in the first of the six diagrams of FIGURE 4 
below as all ways to travel round the pentagon or the pentagram. 

What i s  the group of the Tr icky Six P uzz le? 

As you may have guessed from the brackets in the last section, it is the group 
P G L (2, lF 5) of Mobius transformations over the field 1F 5. 

px + q  
X -+  

rx + s  
ps - qr =I= 0 

This lF 5 is the first of several .finite fields we will encounter. In fact for each prime power 
q there is a unique field with q elements, which we will denote by lF q. So working in 
lF 5 means working modulo 5-but only because 5 is prime. 

There are 52 - 1 = 24 possible nonzero vectors (p, q )  for the top row of the matrix (� �) . and then 52 - 5 = 20 vectors (r, s) that are independent of the first row, as 

possibilities for the second row; a total of 24 x 20 = 480 nonsingular matrices. But 
the matrices M, 2M, 3M, 4M, for example 

all give the same transformation, (0) (3) (oo4) ( 1 2) , taking oo01234 into 402 13oo, 
or RECANT into TEACNR, so that the number of different transformations is only 
480/4 = 120. 
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To the surprise of  at least one of the authors, this group is isomorphic to S5, the 
group of permutations of five objects. We will show that the isomorphism establishing 
this extends naturally to an automorphism of S6, under which the group of the puzzle 
maps to an S5 subgroup of S6 given by fixing a point. It's  in this context that the 
isomorphism is most illuminatingly presented. 

Two d ifferent group actions  

An inner automorphism of  a group is one given by conjugation, that i s ,  each element 
x 1-+ a- 1 xa for some fixed element a .  The automorphisms of a group themselves form 
a group, of which the inner automorphisms form a normal subgroup [2, pp. 140-141] .  
The outer automorphisms are those automorphisms this doesn' t  account for: by one 
definition any non-inner automorphism is outer; by another the outer automorphism 
group is the quotient of the automorphism group by the inner automorphism group. 
The symmetric group S6 is the only finite symmetric group that supports a (nontrivial) 
outer automorphism [11; 14, Theorem 7.3] .  

Suppose an abstract group acts on a finite set T (that is, each element of the group 
permutes T,  and permuting by two group elements in succession is the same as per
muting by their product). If we were to relabel the elements of T by a permutation a, 
then an element that acts via the permutation x after the relabelling would have acted 
by a- 1xa before it. Now suppose our abstract group was the symmetric group ST all 
along. Then a is in ST, so x 1-+ a-1 xa is an inner automorphism of ST. 

So the existence of an outer automorphism of S6 means that it can act on sets of 
size 6 in a fundamentally different way than the obvious one. We' ll realize the outer 
automorphism by constructing such an action, following Sylvester [20, 21, 22, 23, 24] . 

Consider the complete graph on the six points A ,  B, c, D ,  E ,  F. Sylvester calls 
the six points monads, and its �) = 15 edges duads. These duads form 15 = 5 x 3 
matchings, or triads of independent edges, that Sylvester called synthemes, and graph 
theorists know as one-factors. Note that there are 5 choices for A ' s  partner and 3 ways 
to pair the remaining four. 

The graph supports six partitions, or synthematic totals, into five synthemes, shown 
in TABLE 2 and labeled with their associated Tricky Six blocks, oo, 0, 1, 2, 3, 4. 

TABLE 2: The six tota l s: the edge-colori ngs of K6 with five colors 

color 00 0 1 2 3 4 

r AB CF DE AB DE CF AB FD CE AB DC FE AB FE DC AB EC DF 
0 AC DB EF AC FD EB AC EF DB AC BE DF AC ED BF AC BF ED 
y AD EC FB AD CB FE AD BE FC AD FB EC AD CF EB AD FE CB 

AE FD BC AE BF DC AE DC BF AE CF BD AE BC FD AE DB FC 
v AF BE CD AF EC BD AF CB ED AF ED CB AF DB CE AF CD BE 

The complete graph K6 underlying this construction shouldn' t  be confused with 
FIGURE 2, the graph of the puzzle itself. As an example, the coloring associated with 
the label 2, with AB DC FE colored red, AC BE DF colored orange, etc . ,  is illustrated in 
FIGURE 3 . 

If we fix the monad A and operate on the six totals with the 5 !  = 120 permutations 
of the other five monads, we generate the set of possible arrangements of the Tricky 
Six symbols .  

Consider the action of our inner automorphism on conjugacy classes. Within a sym
metric group such as S6 conjugacy classes are just cycle shapes, which we write as 
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Figure 3 The edge-coloring 2 of K6, the complete graph on six points 

partitions of 6. The cycle shapes on the totals attainable in the puzzle are those that 
arise from permutations of the monads which fix A, and these have a fixed point in 
their cycle shape. 

For example, if we fix A and three other vertices, we obtain G) = 10 odd permuta
tions of order 2. These are involutions; each is its own inverse. They appear as the first 
ten entries in TABLE 3: 

TABL E  3: Swapping two vertices of K6 

(DE) (EF) (FB) (BC) (CD) 
(oo0)( 12)(34) ( oo 1) (23) ( 40) (oo2)(34)(0 1) (oo3)(40)( 12) (oo4)(0 1)(23) 

0210 1 1 14 4121  1 124 41 1 1  

(CF) (DB) (EC) (FD) (BE) 
( oo0)( 13)(24) ( oo 1)(24)(30) ( oo2) (30)( 41) (oo3)(41)(02) (oo4)(02)( 13) 

03 10 1214 4321 1324 421 1 

(AB) (AC) (AD) (AE) (AF) 
(oo0)( 14)(23) (oo 1)(20)(34) ( oo2)(3 1) (40) (oo3)(42)(0 1) (oo4)(03)( 12) 

together with the permutations of oo 0 1 2 3 4 that they realize, and the entries pqrs 
of the corresponding Mobius transformation. 

For later reference we include as well the five transpositions that move the monad 
A; these don't realize Mobius transformations . 

We thus find that permutations of ABCDEF of shape 

1 6 2·14 22 12 23 3·1 3 32 1 32 4·12 42 5 1  6 

map respectively to permutations of oo01234 of shape 

1 6 23 22 1 2 2·14 32 6 3·1 3 4·12 42 5 1  321 .  

When A is fixed, respectively 

1 10  15  0 20 20 0 30 0 24 0 
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of  these are attainable. For example, at the entry 4 · 12 we fix A, and one other letter 
(5 ways) and cycle the remaining four (4!/4 = 6 ways), contributing 5 x 6 = 30 to 
the total of 120. As another example, if we fix A and two other vertices and cycle the 
rest, 3 · 13, We obtain e) X 2 = 20 even permutations of order 3. They are displayed 
in TABLE 4. 

TABLE 4: Cycling three of five vertices of K6 

(FBC) (BCD) (CDE) (DEF) (EFB) 
(oo41)(032) (oo02)(143) (oo 13)(204) (oo24)(3 10) (oo30)(421) 

1341 0 1 1 3  1312  23 1 1  3 1 10 

(FCB) (BDC) (CED) (DFE) (EBF) 
(oo 14)(023) (oo20)(134) (oo3 1)(240) (oo42)(30 1) (oo03)(412) 

121 1 1341 1 123 312 1  0 1 12 

(DEB) (EFC) (FBD) (BCE) (CDF) 
(oo32)(0 14) ( oo43)(120) (oo04)(23 1) ( 00 10) (342) (oo21)(403) 

1 121  2131  041 1  1410 1 132 

(DBE) (ECF) (FDB) (BEC) (CFD) 
(oo23)(041) ( oo34)(102) (oo40)(213) (oo0 1)(324) (oo 12)(430) 

143 1 32 1 1  1 140 0 141 1213 

It will be found that any of the 6 x 5 x 4 = 120 possible arrangements of the first 
three, or indeed of any three, symbols in a Tricky Six position is attainable ,  the order 
of the remaining three then being determined. 

All120 positions are conveniently displayed as the set of six diagrams of FIGURE 4. 
The first symbol is in the middle of the appropriate diagram. The next two symbols 
determine a directed edge of a pentagon or pentagram. The final three symbols are then 
found by continuing to cycle round the pentagon or pentagram in the sense defined by 
the edge. For example, the position 24 1xyz is found in the diagram having 2 in the 
middle, where the edge 4 1  defines the counterclockwise pentagram 4 1oo30, so that 
xyz = oo30. 

·® 1 1®4 2@0 3@ 1 ·@2 0@ 3 

3 2 3 2 4 3 0 4 1 0 2 1 Figure 4 All 12 0 Tricky Six positions at a glance 

The six diagrams of FIGURE 4 are also conveniently viewed as the six pentago
nal pyramids that may be sliced from the icosahedron of FIGURE 5, whose opposite 
vertices are identified. Each pyramid comprises four cycles. For example, 

00(0 1234)1 = 00(01234), 00(01234)2 = 00(024 13), 

oo(0 1234)3 = oo(03142), oo(0 1234)4 
= oo(0432 1), 

where the superscripts denote powers, that is the lengths of the steps round the pen
tagon. 

As you can see from TABLE 2, there is a unique synthematic total that is invariant 
under any five-cycle (JKLMN) on the monads A ,  B ,  c, D, E ,  F. Conway, who introduced 
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0 

Figure 5 Another good way to see them a l l  

us  to Sylvester's notation, denotes it by I(JKLMN). The total I(JKLMN) contains the 
syntheme IJ KN LM and its images under powers of (JKLMN). FIGURE 6 shows an 
example. 

B B B B B 

•+c . , 
A
\ � c F/.�c F"'v�c F � /

A 
lc 

Ee •o E� �� E��D E� � D �� D 

Figure 6 A(BCDEF), the unique synthematic tota l, a lso known as oo, invariant under 
(BCDEF) 

The identities 
<+ ... ... 

I(JKLMN)= I(JKLMN)power =J(I LK NM) 

let us bring any of the 6 monads into the initial position, and write the remainder as any 
of 5 presentations of any of 4 powers of the five-cycle left over, giving 6 x 5 x 4 = 120 
names for each total. 

For instance A (B CDEF) = A (B CDEF)? for any exponent ? not divisible by 5,  
and its other names are B (ADCFEf = C (AEDBF)? = D (AFECB )? = E (ABFDCf = 
F(ACBED)?. Each group of names can be thought of as associated with a penta
gram labeled with letters, with the first letter in the centre, like those in FIGURE 4. 
Such pentagrams are fixed by one of the six subgroups of S6 of order 20 that fixes 
oo = A (BCDEF) . 

Indeed, observe that there is a duality of our construction exchanging monads with 
totals and duads with synthemes, realizable as oo01234 +* ABCDEF. Under this ex
change the names of the total oo become just the attainable Tricky Six permutations. 
Our situation can be schematized as in FIGURE 7, the symmetry of which makes the 
duality obvious .  

We saw that the first three symbols determine the whole position, and how to read 
it from FIGURE 4. In fact any three symbols determine the position. For example, to 
find which of oo, 0, 2 should be assigned to x in x3ly4z, look for the edge 31 in the 
oo, 0 and 2 diagrams of FIGURE 4. It respectively defines the pentagram (oo)31420, 
the pentagram (0)31oo42, and the pentagon (2)310oo4, of which the second has 4 in 
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monads duads synthemes 

IJ IJ.KL.MN 

totals 

rr===il 
I(M K J L N) L____J 

Figure 7 Schemat ic v iew of Sylvester's construct ion 
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the required position, 03 1oo42. For another example we may complete x3y 1z4, by 
looking in the same three diagrams for the edge 43 (why 43? Think of x as fixed, and 
notice that 4 and 3 are adjacent in the remaining cycle 3y 1 z43).  This determines the 
pentagons (oo)43210, (0)43oo21 ,  (2)43 10oo, of which the first has 1 in the required 
position, oo32104. 

It is through this automorphism that Rick's Tricky Six puzzle is related to the other 
objects named at the start of the "Not much of a puzzle" section. 

Here's  a first brief example. Implicit in the way we've written TABLE 2 is another 
set of six objects paired with the totals, the mystic pentagons which begin the interest
ing paper [10]. The ten duads that don' t  contain A form two sets of five: the second 
and third columns of each total. Each monad appears twice in each column. If we 
forget the synthemes and remember only the column divisions, we get a mystic pen
tagon, that is, a partition of the edges of complete graph on vertices BCDEF into two 
five-cycles. There are in fact only six mystic pentagons, and we get each of them once 
(FIGURE 8). Therefore the permutations of the mystic pentagons which can be attained 
by permuting BCDEF exactly form the Tricky Six group. 

Figure 8 The s ix myst ic pentagons 

The remainder of this paper is devoted to a more leisurely examination of several 
other examples . 

The p rojective p lane of order 4 
The projective plane of order four, PG(2, lF4) ,  is often defined by means of a cyclic 
difference set, for example {3 , 6, 12, 7, 14} modulo 2 1 ,  whose five members generate 
the {;) differences ± 1 ,  ±2, . . .  , ±10. Note that the first three elements generate the 
multiples of 3, and the last two generate the multiples of 7. Think of the difference set 
as a complete pentagon which cycles round a complete regular 21 -gon as in FIGURE 
9. Among its 10 edges there is exactly one of every possible length, so that every pair 
of the 2 1  points belongs to just one pentagon. Dually, any two pentagons have just one 
vertex in common. 

Call the pentagon {3 , 6, 12 ,  7, 14} the line 0. Subtract 3 , 4, 9, 1 1  modulo 21  to give 
the respective lines 

3: {0, •• 9, 4, 1 1 } , 

9: { 15 ,  1 8 ,  �. 19 ,  5 } ,  

4: {20, 2,  8 ,  0, 10 } ,  

11:  { 1 3 ,  16 ,  1 ,  17 ,  ,.} . 
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These four lines each pass through the point 3 which i s  denoted differently in  each 
of them, by •· 0, o, and 6 in turn, and is circled in FIGURE 9. The other four points 
on each of these lines are represented in the figure by the corresponding suit symbols. 
They exactly cover the 16 points which are not on line 0. 

18 
0 

17 
.. 

16 .. 

15 0 

14 

20 

19 <:? 
0 

12 • 

0 

• 

1 1  10 

1 

.. 2 

• 
9 

<:? 

<:? 

3 

6 

8 

Figure 9 A d ifference set generates the projective plane of order 4 

In general, we give the line { 3- n ,  6 - n ,  12- n ,  7 - n ,  14- n} modulo 21  the 
name n, 0 ::::: n::::: 20, as in TABLE 5 ,  which displays a configuration of 2 1  points and 
21  lines with 5 points on each line, 5 lines through each point, every pair of lines 
intersecting in a point and every pair of points determining a line. Bold numbers refer 
to lines, ordinary numbers to points (or vice versa, since the configuration is self-dual). 
The line i passes through the point j if and only if the point i lies on the line j. 

TABLE 5: Incidences in the projective plane of order 4 

lines 0 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

points 3 4 5 6 7 8 9 1 0  1 1  1 2  1 3  14 1 5  16 17 1 8  19  20 0 1 2 
porn� 6 7 8 9 1 0  1 1  1 2  1 3  14  1 5  16 17 1 8  19 20 o 1 2 3 4 5 
points 12  1 3  14 1 5  1 6  1 7  1 8  1 9  20 0 1 2 3 4 5 6 7 8 9 1 0  1 1  
points 7 8 9 1 0  1 1  1 2  1 3  1 4  1 5  1 6  1 7  1 8  1 9  20 0 1 2 3 4 5 6 
points 14 15 16 17  1 8  19  20 0 1 2 3 4 5 6 7 8 9 1 0  1 1  12 1 3  

Twenty-one i s  not a prime power, so  the numbers 0, 1 ,  . . . , 20 do not form a field. 
However, they do form an additive cyclic group, and the twelve numbers which are 
not multiples of 3 or 7 form a multiplicative group, of which the powers of 2 are a 
subgroup. 

Let's find two different actions of S6 in this projective plane. As the two sets of 
size six let us take the points 1 2 4 8 16  1 1  (the powers of two, 2° , 21 , 22 , 23 , 24 , 25 , 
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mod 2 1 )  and the lines 0 18 15 9 14 7 (zero and the negatives of the original difference 
set) . 

We can begin to rewrite TABLE 2 for the projective plane by replacing the labels A 
B c D E  F of the vertices of K6 with the respective point numbers 1 2 4 8 1 6  1 1 .  We also 
relabel the totals ,  oo 0 1 2 3 4 with the respective line numbers 18 15 14 0 7 9. Then, 
with TABLE 5 as our guide, we label the edges AB , CF, DE which join the points 1 & 2, 
4 & 1 1 ,  8 & 16 ,  with the line-numbers 5 3 19 and similarly for all the fifteen synthemes. 
The lines 5 3 19 concur in the point 9 and each syntheme corresponds to a point. The 
labels of these fifteen points are just those numbers that are not powers of two, and 
TABLE 2 turns into TABLE 6. You can check that this is the same configuration, with 
the same labelling, as before. 

TABLE 6: An assignment of numbers to TABLE 2 

18 15 14 0 7 9 
5 3 19 9 5 19 3 9 5 16 8 19 5 20 17 7 5 17 20 7 5 8 16 19 
2 4 17 10 2 16 12 12 2 17 4 10 2 12 16 12 2 19 1 5 2 1 19 5 
6 8 1 6 6 10 17 18 6 12 3 0 6 1 8 6 6 3 12 0 6 17 10 18 

11 16 10 17 11 1 20 13 11 20 1 13 11 3 4 3 11 10 16 17 11 4 3 3 
13 12 20 15 13 8 4 20 13 10 19 14 13 19 10 14 13 4 8 20 13 20 12 15 

The points 1 ,  2, 4, 8, 1 6, of which no three are collinear, form a conic, that is, the 
solution set of a homogeneous quadratic over the field of order four. The tangents to 
the conic are the lines that meet the conic in just one point (indicated by a hat): 

13 { 1 1 14  20 1 5  i} ,  16 {8 1 1 11 1 2  1 9} ,  1 {2 5 1 1  6 1 3} ,  

17  {7  10  f6 1 1 1 8} , 3 {0 3 9 4 1 1} .  

These are the five lines through the point 1 1 .  This point combines with the conic to 
form a hyperconic, six points no three of which are collinear. These six points are the 
monads, and determine (�) = 1 5  lines, the duads, which meet in threes at the other 
fifteen points; these correspond to the synthemes.  The remaining six lines (0, 7, 14, 
9, 18, 15) that don' t  meet the hyperconic correspond to the totals ;  no three of them 
concur and they form a set of lines dual to the set of six points . 

We repeat FIGURE 7 as FIGURE 10, annotating the nodes further to make clear the 
interpretation of the figure as the projective plane. 

monads 

POINTS 
on the 

hyperconic 

duads 

LINES: 
chords of the 
hyperconic 

synthemes 

POINTS 
not on the 

hyperconic 

totals 

LINES 
not meeting the 

hyperconic 

Figure 1 0 Schematic view of the projective plane of order 4 

Our two nonisomorphic S6-actions show up here as the action that permutes the 
points of any six-point hyperconic, like 1 2 4 8 1 6  1 1 ,  and the action induced on 
the lines not meeting it, in this case 0 7 14 15 18 9. Our numbering makes it easy 
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to check that doubling all the vertex labels modulo 21  i s  an automorphism that fixes 
the hyperconic under which line labels are also doubled, so the cycle (1 2 4 8 16 1 1 ) 
induces the permutation (0)(7 14)(9 18 15) of the six lines . If we swap 1 and 2 and fix 
the other four points , ( 1  2)(4)(8)( 1 6)( 1 1 ) ,  this induces (0 7)(15 18)(9 14) on the lines 
and these two automorphisms are enough to generate the whole group. 

We can't draw the plane with straight lines, so, in FIGURE 1 1 , although the twenty
one points 0, 1 ,  2, . . .  , 20 are clear, the lines are less so. The line 9 is the incircle of 
the pentagon and the lines 0, 14, 15, 18, 7 look like petals. The lines 3, 16, 17, 13, 1 
are the diameters through the point 1 1 .  The lines 4, 8, 6, 12, 2 are pentagram edges, 
that need to be bent round to pass through the respective points 3, 19, 1 8 ,  15 ,  5; and 
the lines 11, 5, 10, 20, 19 are pentagon edges, both ends of which should be bent round 
to pass through the respective pairs of points 17&13 ,  7&9, 14&17, 13&7, 9&14. 

15 
17 

Figure 1 1  The projective plane of order 4 

3 

The points 3 ,  6, 12, 7, 14 of line 0 thus lie on the respective lines 3, 6, 12, 7, 14 and, 
of course, lie just one on each of the remaining fifteen lines. The other four points on 
such a line comprise two pairs that form triples with the line number, each member of 
a triple being the number of the line containing the other two points. For example, line 
18 contains the point 6 and the four points 9, 15 ,  10, 17 whose joins to the point 1 8  are 
the respective lines 15, 9, 17, 10 which form the triples {18, 15, 9},  and {18, 17, 10}. 
There are ten such triples and they exhibit the ten differences 1 � d � 10  exactly three 
times each. For example, the difference 5 occurs in the triples {8, 13, 4}, {11,  16, 7}, 
and {15, 20, 13}. These ten triples correspond to the sets of edges of pairs of opposite 
faces of an icosahedron, half of which is shown in FIGURE 12. 
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Figure 12 Ten triples form half an icosahedron 

Buy one; get severa l free! 
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We noticed that the difference set {3 , 6, 12 ,  7, 14} comprised two difference sets : 
{7, 14} generates the multiples of 7 and {3 , 6, 1 2} generates the multiples of 3. So the 
projective plane of order four contains the not very exciting projective plane of order 
one: the triangle {0, 7, 14} and 1 1 19 other copies of it, and the much more interest
ing projective plane of order two, the so-called Fano configuration (although it was 
known more than 40 years earlier to the Rev. T. P. Kirkman [12]) .  Besides the obvious 
example, whose point-numbers are congruent to 0 modulo 3 ,  which is self-dual in 
the sense that it has the same line-numbers, and is shown in FIGURE 1 3 ,  there are 
359 others : including the dual pair whose point- and line-numbers are respectively 
congruent to 1 and 2 (or to 2 and 1 )  modulo 3 . . The figure also shows a dual pair whose 
point-numbers differ by 3 from the line-numbers. 

18 2 5 

3 

Figure 13 Kirkman-Fano configurations 

More surprising is the fact [1] that if we throw away a hyperconic we are left with 
fifteen points which form a projective geometry of order two in three dimensions ! 
For example, throw away 1 ,  2, 4, 8 ,  16 ,  1 1. The remaining points are those of the line 
{0, 5 ,  7, 17, 20}, and its double {0, 10,  14, 1 3 ,  19}, together with the multiples of 3. 
FIGURE 14 shows this geometry as a tetrahedron, as Polster would draw it [13] . Its 
fifteen points are the vertices, 5 7 17 20, the midpoints of the edges (multiples of 3), the 
centroids of the faces, 10  14 1 3  19, and the centroid, 0. Fifteen of the thirty-five lines, 
those which meet the hyperconic, are inherited from the plane: they are the twelve 
medians of the faces and the three joins of midpoints of opposite edges . The other 
twenty are the vertex sets of triangles formed by three of the six lines 0, 7, 14, 9, 18, 15 
which avoid the hyperconic. They appear as the six edges of the tetrahedron, the four 
joins of the vertices to the centroids of the opposite faces, and ten lines which cannot 
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b e  drawn in Euclidean space: the four incircles of the faces and six similar curves 
circumscribing the "medial triangles": 

{3, 14 ,  19} {6 ,  10, 14} {9 ,  10, 1 3} { 1 2 , 1 3 ,  14} { 15 ,  10, 19} { 1 8 ,  1 3 ,  1 9} 

formed by the triples of lines 

14, 9, 0 14, 0, 18 14, 15, 18 

5 

14, 0, 15 14, 9, 18 

Figure 14 The projective geometry PG(3, lF'2) 

14, 9, 15. 

A different and quite revealing labelling of the 15 = 24 - 1 = 4 + 6 + 4 + 1 points 
is to assign 1 ,  2, 4, 8 to the vertices, sums of pairs of these to the midpoints of the 
edges, sums of three to the centroids of the faces, and the sum of all four, 15 ,  to the 
centroid. 

old numbers 5 7 3 17 1 5  6 1 3  20 1 8  12 10 9 14 19 0 

new numbers 1 2 3 4 5 6 7 8 9 10 1 1  12  1 3  14 1 5  

The thirty-five lines are then those triples whose nim-sums (XOR, binary addition 
without carry) are zero: the ten "noneuclidean" lines correspond to those nim-sums 
which are not ordinary sums, for example, 3 E9 5 = 6 and 5 E9 1 1  = 14. The 15 = 

24 - 1 = 4 + 6 + 4 + 1 planes of the geometry are Kirkman-Fano configurations :  the 
four faces of the tetrahedron, the six "medial planes" joining the midpoint of an edge 
to the opposite edge, the four "cones" joining a vertex to the incircle of the opposite 
face, and the "sphere" of midpoints of edges together with its centre, 15 .  

Remarkably, the thirty-five lines can be  partitioned, in  240 different ways, into 
seven sets of five lines, with no two of the five intersecting, each set exactly covering 
the fifteen points . That is, the thirty-five lines can be arranged as rows in a Kirkman 



VOL.  82, NO. 2, APRIL 2 009 97 

( 15 ,  3 ,  1 )-design; they provide solutions to the famous Kirkman schoolgirls problem, 
with which readers of the previous issue of this MAGAZI NE will already be familar 
[4]. An example is shown in TABLE 7. 

TABLE 7: The thirty-five lines of PG (3,IF'2) form a Kirkman (15,3, 1 )-design 

Sun Mon Tue Wed Tim Fri Sat 

1 2 3 1 4 5 1 6 7 1 8 9 1 10  1 1  1 1 2  1 3  1 1 4  1 5  
5 8 1 4  3 9 1 0  3 8 1 1  2 4 6 2 5 7 3 4 7 3 5 6 
4 1 1  15  2 1 2  14  2 1 3  1 5  3 12  15  3 1 3  14  2 9 1 1  2 8 10 
7 9 14 7 8 15 5 9 12  5 1 1  14 4 8 12  5 1 0  1 5  4 9 13  
6 10  12  6 1 1  1 3  4 1 0  1 4  7 10  1 3  6 9 1 5  6 8 14  7 1 1  12  

The fifteen Kirkman-Fano planes each appear as seven triples, one from each day 
of the week. For example, the "cone" 1 6 7 10 1 1  12  1 3  is represented by 6 10 12, 
6 1 1 13 ,  1 6 7, 7 10  1 3 ,  1 10  1 1 , 1 1 2  13 ,  and 7 1 1  1 2. 

A somewhat surprising connection between PG(3, lF2) and the Lehmers ' method of 
factoring integers by means of quadratic forms is made in [7, §§26 & 27]. 

The Hoffman-Singleton graph 

A Moore graph of type v, k is a regular graph of valence v and diameter k with the 
maximum possible number of vertices, namely ( v ( v - 1 )k - 2) I ( v - 2) . This formula 
doesn't  make sense if v = 2, but it tends to the limit 2k + 1 as v approaches 2, and 
this is the number of vertices in the valence 2 case. Hoffman & Singleton [8] showed 
that for diameter 2 there are at most four such. Their valences are 2 (the pentagon), 
3 (the Petersen graph), 7 (the Hoffman-Singleton graph) and possibly 57 (though the 
existence of this last remains an unsolved problem). The Hoffman-Singleton graph 
has 50 vertices and 175 edges, and like every Moore graph of diameter 2 its shortest 
cycles are pentagons so that its girth is 5 . 1ts automorphism group has order 252000 = 

2532537. It is arc-transitive, that is it has an automorphism sending a particular edge 
to any of its 175 edges with either of 2 orientations. The stabilizer of an oriented edge 
thus has order 252000/ ( 175 · 2) = 720, and indeed is isomorphic to S6, as reflected in 
the following construction of the graph from our versatile TABLE 2. 

To draw the Hoffman-Singleton graph, start with an edge joining vertices which we 
label* and G. Label the six other vertices adjacent to* with the letters A Bc D E  F and 
the other six adjacent to G with the symbols oo 0 1 2  3 4 as in FI GURE 15 .  The other 36 
vertices are { xn} ,  where x runs through the letters A B c D E F and n runs through the 
symbols oo 0 1 2 3 4, and there are the implied adjacencies, for example vertex c2 is 
adjacent to vertices c and 2. It remains to insert the other 175 - ( 1  + 12  + 36 + 36) = 

90 edges. Again, they correspond to our edge-colorings of K6• 
Recall the fifteen swaps of TABLE 3. They each provide six adjacencies, for ex

ample 

provides the six adjacencies 

(CE) (oo2) (30) (41 )  

Coo-E2 C2-Eoo C3-E0 C0-E3 C4--E1 C1-E4 
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* ---- G 

A B C D E F 00 4 

Aoo A0 Al A2 A3A4Boo BO Bl B2 B3 B4CooC0 Cl C2 C3 C4 Doo DO Dl D2 D3 D4 Boo EO El E2 E3 E4 Foo F0 Fl F2 F3 F4 

Figure 15 How to construct the Hoffman-Singleton graph 

We can also succinctly describe the 6! automorphisms of the graph fixing the edge 
*-G: they permute the vertices A B c D E F arbitrarily and the vertices oo 0 1 2 3 4 as 
dictated by construction. 

Other constructions for the Hoffman-Singleton graph are given in [3, § 13 . 1 ] .  Con
way showed us his perspective, which begins with a distinguished vertex rather than 
an edge. We' ll choose* in FIGURE 1 5  as this vertex. Its neighbors are the six monads 
ABCDEF and G, and the other neighbors of G are the totals .  This suggests that to place 
all seven neighbors of* on an equal footing we should recognize G as a seventh monad 
and interpret the other neighbors of an original monad I as the totals on the set of the 
six other monads, so that what we before called xn is reinterpreted as the total n with 
x replaced by G. Therefore the vertices adjacent to a numbered total n on ABCDEF are 
just the totals xn on ABCDEFG that differ from it only by a single-letter substitution. 
In fact this turns out to be true of any pair of totals ,  determining all remaining edges 
of the graph. The resulting picture of the Hoffman-Singleton graph is FIGURE 16 .  

G 

�'absolute" point 

;:::1� 
F E D c 

F(EDCBA) swap F,G G(EDCBA) 

misses G two totals misses F 

obtained by swapping 
their "misses" are joined 

B A (7 monads) 

Figure 16 Conway's description of the Hoffman-Singleton graph 
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The Steiner system 5(5, 6, 12) 
The Steiner system S(5 ,  6, 1 2) is a set of blocks of 6 elements, hexads, chosen from a 
set of 12  so that each pentad, or choice of 5 elements from the 12 ,  occurs exactly once 
in a block. Hence the number of blocks is (�2) / (�) = 1 32. 

We use A Bc D E  F oo 0 1 2 3 4 for our 12  elements: in fact ABCDEF and oo01234 
will be two of the blocks. We get 15 x 6 = 90 blocks that contain four letters and two 
numbers, or two letters and four numbers, from the fifteen swaps of TABLE 3 .  

For example, the swap 

(FB) (oo2) (34) (01 )  

yields the six blocks 

A2CDEOO, A4CDE3 ,  A 1CDE0, F0 1 B 34, oo012FB , OOFB234 

where the pairs of numbers oo2, 34, 01  have been substituted for the pair of letters 
FB in ABCDEF and, conversely, the letters FB have been substituted for the pairs of 
numbers in oo01234. 

The other 40 blocks have three letters and three numbers and may be generated in 
pairs from the (�) = 20 three-cycles of TABLE 4, by substitutions exchanging three 
letters and three digits . That table omits the three-cycles moving the monad A, but all 
we need here is the partition of the totals into the two three-cycles that these induce, 
and this partition is the same one that arises from the cycles on the other three monads. 
So for instance the cycles (BDE) and (BED) correspond to the permutations (oo32)(014) 
and (oo23)(041 )  while (ACF) and (AFC) correspond to (oo23)(014) and (oo32)(041) .  

For example, the cycle (BEF) associated with the permutation (oo30)(214) gives rise 
to the four blocks 

AooCD30 A 1 CD42 oo0BF3E BF1 2E4 

How do we know that each pentad occurs exactly once ? If a pentad consists of 5 
letters, or 5 numbers, then the hexad is ABCDEF or oo01234. If it consists of 4 letters 
and a number n the hexad will contain a second number. This is found in TABLE 3 
which displays all (�) = 15 swaps of two vertices. Select the swap of the two letters 
which are not in the pentad and take the number paired with n .  For example, given 
the pentad ACEF3 , look at the entry (DB) (oo1)(24)(30) where 3 is paired with 0, so 
that the pentad belongs to the unique hexad A3C0EF. If the pentad contains 4 numbers 
and a letter, for example, oo024B , find the entries of TABLE 3 that contain the miss
ing numbers 1 3 ,  namely (AD) , (CF) , (BE) .  Here B is paired with E, so the hexad is 
oo0B2E4. If the pentad contains 3 letters and 2 numbers, or 3 numbers and 2 letters, 
we use TABLE 4. For example, for BCF23 we find (FBC) (oo41)(203) so that the hexad 
is completed with 0. But if the pentad were BCF24, with 2 and 4 in different triples, the 
hexad must be completed with a letter. In TABLE 3 the pair (24) occurs in the swaps 
(AE) , (BD) and (FC), so the missing letter is D: 2BCD4F. 

If the pentad were BCF02,  then (02) occurs in (AC) , (DF) , (EB ) with B c F in three 
different pairs : the pentad requires a number; TABLE 4 gives (FBC) (oo41)(203) ;  the 
missing number is 3 .  

A (12, 132, 4)  binary code and the ternary Golay code C12 

In a binary code, the letters of the codewords are zeroes and ones. The number of 
letters in a codeword is its length and the number of ones is its weight. The 1 32 hexads 
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of the Steiner system S(S ,  6, 1 2) form a basis for a binary code with words of length 
12  and weight 6. 

The blocks of the Steiner system indicate which letters of the 12-letter codewords 
are occupied by six ones or by six zeroes . In anticipation of the construction of the 
ternary Golay code C12 we will put the letters in the order 

A 0 1 2 3 4 oo B C D E F  

and, for ease of reading, we will leave space round the 1 st and 7th letters. 
For example, our initial blocks ABCDEF and oo01234 correspond to the codewords 

1 00000 0 1 1 1 1 1  and 0 1 1 1 1 1  1 00000; the blocks 

A2CDEoo, A4CDE3 ,  A l CDEO, 

and their complements 

F0 1 B 34, oo0 1 2FB , OOFB234 

correspond respectively to  the codewords 

1 00100 1 01 1 10, 1 0001 1 0 0 1 1 10 ,  1 1 1000 0 0 1 1 10, 

and their complements 

0 1 101 1 0 10001 ,  0 1 1 100 1 1000 1 ,  0 001 1 1 1 10001 ,  

while the blocks 

ooB30EF, 1 B24EF, AD1 2C4, oo0AC3D 

correspond to 

0 10010  1 1001 1 ,  0 01 101  0 1001 1 ,  1 0 1 101  0 0 1 100, 1 10010 1 01 100.  

Each codeword differs from every other in at least four places, that is ,  the Hamming 
distance between any two words is at least 4. 

Suppose that you received a codeword 0 0 1 10 1  1 10 10 1 .  This contains seven ones, 
so there is an error. Assume that the zeroes are correct. They correspond to the pentad 
A03CE. TABLE 4 has the (complementary to Ac E) entry (FBD) (oo04)(23 1) ;  0 and 
3 are in different triples, so the missing element is a letter. In TABLE 3 the pair (30) 
occurs in (DB ) ,  (EC), and (AF) , so that the missing letter is F and the final 1 in the 
erroneous codeword should have been 0, making it 0 0 1 101  1 10100. 

We can pass from this binary code to a ternary code, which we now present in 
outline. 

To incorporate the words of our binary code into a ternary code we will leave the 
zeroes as they are and endow the ones with signs. With a correct choice of signs the 
resulting 1 32 words of length 12  can be made to generate by addition a linear code of 
dimension 6, that is a 6-dimensional subspace of the ambient vector space JF�2 over the 
finite field lF 3 = { - 1 ,  0, + 1}. Our code will thus contain 36 = 729 codewords. 

Aside from the zero word 0 00000 0 00000, the words will come in pairs of opposite 
sign. In fact, we will obtain no nonzero codewords with more zeroes than the signed 
manifestations, two apiece, of our 132 words from the binary code. So the minimal 
distance of our code will increase to 6. The resulting code is known as the ternary 
Golay code and denoted as C12 • 
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From [5, p. 85] we learn that C12 may be obtained by appending a zero-sum check 
digit to C1 1 , the quadratic residue code of length 1 1  over IF 3 ; that a generator matrix is 

A 0 1 2 3 4 00 B c D E F 

1 0 0 0 0 0 0 1 1 1 1 1 
0 1 0 0 0 0 - 1  0 1 - 1  - 1  1 
0 0 1 0 0 0 - 1  1 0 1 - 1  - 1  
0 0 0 1 0 0 - 1  - 1  1 0 1 - 1  
0 0 0 0 1 0 - 1  - 1  - 1  1 0 1 
0 0 0 0 0 1 - 1  1 - 1  - 1  1 0 

that it has weight enumerator 

x 12 + 264x6l + 440x3l + 24y 12 

that is it contains 1 ,  264, 440, and 24 words with respectively 0, 6, 9, and 1 2  nonzero 
letters, and that its automorphism group is 2 .M12 , that is it has the Mathieu group M12 
as a normal subgroup with quotient (cyclic of order) 2. 

But by now we've roved far enough from the Tricky Six puzzle, so we pursue codes 
no further and tum to the 

Conclusion 

Our favorite for an actual puzzle changes C into W and T into D, turning RECANT into 
REWAND. Manoeuvre #1 of the "Not much of a puzzle" section then gives the figure 
on the cover of this MAGAZINE, which should be read clockwise, starting from twelve 
o' clock. The solution: move the letters R E W A  R E W A  R E and read clockwise from 
noon again. 
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For what positive x is the xth root of x the greatest? [1, 2] 

Solution. x > 0 ::::} ,ifX ::=: ,y/e. 
y y = exle y 

y = x 
e lle 
x llx 

0 

y = t!lx 

X 

[In the right-hand figure, x > 1 ;  the other case differs only in concavity.] 
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Anneliese, Brian, and Carlos among them own all 1 500 shares of a small company's 
stock. At the annual stockholders' meeting, each stockholder's vote counts the same 
as the number of shares that he or she owns. A measure at the meeting passes if stock
holders accounting for 2/3 of all shares support the measure. Because controversial 
measures about moving manufacturing to Asia and replacing the CEO of the company 
are to be voted on at the upcoming meeting, Brian and Carlos each buy 100 shares of 
stock from Anneliese in an effort to gain more influence. Brian finds that he has more 
influence than before, while Carlos discovers that his vote cannot affect the outcome 
on any measure, when before it could! How can this happen? 

I will introduce simple weighted-voting games to model the stockholder scenario, 
and other voting situations, and power indices to measure the effect voters have on 
the outcome of yes/no elections. Power indices have been used to analyze the simple 
weighted-voting game models of the International Monetary Fund [9, 19], the Elec
toral College [21], the European Union Council of Ministers [13, 18], and the Israeli 
Knesset [17]. Power index calculations have also been used in the debate on the de
sign of institutions, as in articles about the effects of reforms on, and the introduction 
of new members into, the European Union [32, 33]. 

Counterintuitive results such as Carlos ' predicament are often called paradoxes. 
The literature on power indices is full of paradoxes, as well as real-life institutions that 
exhibit them. The paradox of redistribution [9, 25], the donor and transfer paradoxes 
[10], the paradox of quarreling members [15], the paradox of a new member [3, 4], 
and the paradox of large size [3, 28] capture diverse aspects of counterintuitive be
havior in simple weighted-voting games. Using geometry, I will explain and classify 
the causes of voting power paradoxes. Surprisingly, 3-voter examples are sufficient to 
understand the geometry. The low dimension and the inherent symmetry of the 3-voter 
examples are often enough to prove that all power indices are susceptible to a partic
ular paradox. Bradberry [2] used the same geometric approach to examine paradoxes 
of apportionment methods. 

To place a simple weighted-voting game in a geometric setting, let the weights 
of the voters (the number of shares in the stockholder example) represent a point in 
Euclidean space. The voting rule (2/3 for the stockholder game) defines hyperplanes 
that partition the space into different parts or equivalence classes so that the power of 
each player is fixed for all games in an equivalence class ;  for the 3-voter examples, 
the hyperplanes are lines. Three types of geometric phenomena describe the changes 
in a game that may result in counterintuitive outcomes. A change in the weights of the 
players (as when Brian and Carlos buy additional shares) may cause a point to pass 
a hyperplane. A change in a voting rule (for example, if 2/3 were changed to 3/4) 
may affect the size and number of parts in the hyperplane partition. A change in the 
number of players (for example, if Anneliese were to sell all of her shares or to sell 
some shares to a 4th person) results in a projection to or from a boundary of the space 
of games with a specific number of players. 
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Simple weighted-voting games, geometry, and power 

Much of the language in simple weighted-voting games comes from the context in 
which a: measure, sometimes called a bill, proposal, legislation, or candidate, is being 
compared to a status quo. Simple weighted-voting games model situations in which 
yes/no votes are not treated equally by assigning weights, often nonnegative integers, 
to "yes" votes. If the sum of the weights of the "yes" votes matches or exceeds a 
threshold, then the measure is passed, replacing the status quo. In this case, the subset 
of "yes" voters is called a winning coalition. If the sum weight of the "yes" votes is 
less than the threshold, then the status quo is retained and the subset of "yes" voters is 
called a losing coalition. 

The stockholder game, where the number of shares of stock are the weights, is 
one situation that can be modeled by simple weighted-voting games, but there are 
others. In the Electoral College game, the weights are explicit from the context: the 
weight of a state is the number of its electoral votes. Decisions in the United Nations 
Security Council (UNSC) treat votes of the permanent members (United States, United 
Kingdom, Russia, France, and China) differently than votes of the 10 nonpermanent 
members. Even though the UNSC does not specify weights, it is possible to derive 
weights from the description of winning coalitions, as described in [27] . 

The threshold of the simple weighted-voting game is called the quota. In the Elec
toral College, the quota is 270 electoral votes, a simple majority of the possible 538 
electoral votes, the sum of the electoral votes of all states. In the UNSC game, the 
quota is determined in conjunction with the weights from the ways in which subsets 
of members of the UNSC form winning coalitions. The weights and the quota are con
nected and together define a simple weighted-voting game. If the quota is less than a 
simple majority of the sum of the weights of the voters, then it would be possible for 
two coalitions to pass conflicting legislation, so we eliminate that possibility. Further, 
a measure should pass if all voters support it. These two conditions ensure that the 
simple weighted-voting game is well defined. 

Let [q ; w 1 , . . .  , wn l represent the simple weighted-voting game where voter i E 
N = { 1 ,  . . .  , n} has weight wi assigned to its "yes" votes and q is the quota. In this 
notation, the two conditions for a simple weighted-voting game to be well defined are 
w j2 < q =::: w = w 1 + · · · + Wn . Let the value function v indicate whether a coalition 
S � N is losing or winning by {0 if v(S)  = 

1 if 
LieS Wi < q ,  

Lies Wi � q .  

It is often useful to keep track of the minimal winning coalitions, winning coalitions for 
which no proper subset is also winning. For a simple weighted-voting game, a voter 
influences the outcome of an election only if it is a member of a minimal winning 
coalition. This follows because if all other voters in a minimal winning coalition vote 
"yes," then the outcome of the election hinges on the yes/no vote of the remaining 
voter. 

Simple weighted-voting games are a special case of the larger class of simple 
games. A simple game is simply a list of winning coalitions, subject to the require
ments that the complement of a winning coalition is never a winning coalition, a su
perset of a winning coalition is always a winning coalition, and the set of all players is 
a winning coalition. Taylor and Zwicker [31] provided a vote-trading condition to de
termine whether or not a simple game can be represented as a simple weighted-voting 
game. I restrict attention to simple weighted-voting games because the geometric ap
proach provides insight to the causes of paradoxes of voting power. These paradoxes 
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arise even in the most easily understood voting systems and do not require the added 
generality of simple games. 

Stockholder game To flesh out the stockholder game from the introduction, 
assume that Anneliese, Brian, and Carlos have 800, 500, and 200 shares of stock, 
respectively. The quota is 213 of the 1500 shares or 1000 shares .  The stockholder 
game is given by [ 1000; 800, 500, 200] , where Anneliese, Brian, and Carlos are 
voters (or players) 1 ,  2, and 3 ,  respectively. The minimal winning coalitions are 
{ 1 ,  2} and { 1 ,  3}, because w 1 + w2 � q and w 1 + w3 � q .  If player 1 votes "yes" 
and player 2 votes "no," then player 3 determines whether or not a measure 
passes. Despite having only 200 shares of stock, how Carlos votes may affect the 
outcome. Whenever a voter is a member of a minimal winning coalition, then his 
or her vote may make a difference. 

Suppose that Brian and Carlos each buy 100 shares of stock from Anneliese. 
With the players ordered as before, the resulting game is [ 1000; 600, 600, 300] . 
Even though Carlos increases his number of shares to 300, now his vote cannot 
change the outcome of an election, regardless of how Anneliese and Brian vote. 
Because the quota is only reached if Anneliese and Brian vote in the affirmative, 
{ 1 ,  2} is the sole minimal winning coalition. As before, w 1 + w2 � q ,  but now, 
w 1 + w3 < q ,  flipping the inequality. I will return to this example and will view 
the change in the relationship between w 1 + w3 and the quota q from a geometric 
perspective. 

Geometry of simple weighted-voting games We can normalize a simple weighted
voting game [q ; w 1 ,  . . •  , Wn ] by dividing by w to yield [qlw ;  x1 , • • •  xn ] where 
x; = w; /w .  The weights of normalized games are viewed as points on the (n - I ) 
dimensional simplex 

Sn- 1 = { (xl , . . .  , Xn ) I X1 + · · · + Xn = 1 and X; � 0 for all i} . 

For each S s; N, the hyperplane of the form L; es X; = q I w divides the simplex into 
two regions :  those games for which S is a winning coalition and those games for which 
S is a losing coalition. The collection of hyperplanes partitions the simplex into parts 
whose number and size depend on the normalized quota q I w .  

Fortunately, only 3-voter examples are necessary to understand the paradoxes of 
voting power. For a game with 3 players, the normalized weights of the 3 players are 
viewed as a point on the 2-simplex, which is the intersection of the plane x1 + x2 + 
x3 = 1 and the nonnegative octant, where xi � 0 for all i .  This forms the equilateral 
triangle shown in FIGURE 1 with a coordinate system in which each x; measures the 
perpendicular distance from the point (x1 , x2 , x3) to one of the sides of the triangle. An 
important consequence of this geometry is that one x; is constant on any segment par
allel to a side of the triangle and x; = ,.J3!2 x; .  Because x1 + x2 + x3 = 1 ,  it follows 
that the sum of the x;s is constant and equal to the height of the equilateral triangle, 
a result known as Viviani 's  Theorem. Three Proofs Without Words of this result have 
appeared in the MAGAZINE [24, 30, 34] . 

When considering all possible normalized simple weighted-voting games in the 
simplex S2 for a fixed normalized quota q E ( 1 12, 1 ] , the hyperplanes (or lines) 

partition the simplex. The hyperplane x; = q defines the segment x; = ,.J3j2 q par
allel to one of the sides of the equilateral triangle. Because x1 + x2 + x3 = 1 ,  then 
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(0, 0, 1 ) 

(0, 1 ,  0) X2 

( 1 ,  0, 0) (0, 1 ,  0) 

X l  

Figure 1 The p lane x1 + x2 + X3 = 1 and the 2 -s imp lex { (x1 , x2 , X3 ) I x1 + x2 + X3 = 1 ,  
x, ::: 0, x2 ::: 0, and X3 ::: 0} with d i stances xj = (.J372) x; 

x1  + x2 = q, Xt + x3 = q, and x2 + x3 = q are equivalent to x3 = 1 - q, x2 = 1 - q, 
and x1 = 1 - q, respectively. For q < 1 ,  the hyperplanes define 6 line segments par
allel to the sides of the equilateral triangle and partition the simplex into ten regions 
R1 - R10 (FIGURE 2 and TABLE 1 ) .  If a game lies on a hyperplane, its region can be 
determined from the winning coalitions in TABLE 1. For example, a game on the part 
of w2 = 1 - q between R6 and R7 belongs to R1 , because w1  + w3 = q ensures that 
{ 1 ,  3 }  is a winning coalition. When q = 1 ,  R 10 is the entire interior of the simplex be
cause regions R4, R5 , and R6 become line segments, R1 , R2 , and R3 reduce to points, 
and R1 , R8 , and R9 are empty. 

In regions Rt . R2 , and R3 , a dictator forms a singleton winning coalition, which is 
necessarily minimal, as seen in TABLE 1. As the name implies, a dictator' s  vote decides 
the outcome of the election because its weight is at least as large as the quota. A voter 
is called a dummy voter if he or she is not part of any minimal winning coalition. For 
example, in region R6 , voter 3 is a dummy voter, just like Carlos after he buys the 
additional shares of stock, because 3 ¢ { 1 ,  2} ,  the only minimal winning coalition (as 
in TABLE 1 ) .  

(0, 0 ,  1 ) (0, 0, 1 ) (0, 0, 1 ) 

( 1 ,  0, 0) (0, 1 ,  0) ( 1 ,  0, 0) (0, 1 ,  0) ( 1 ,  0, 0) R1 Rs (0, 1 ,  0) 
Figure 2 S hape of regions for var ious normal ized quotas: 1 /2 < q < 2/3 ( left), q = 2/3 
(midd le), and 2 /3 < q < 1 (r ight) 

The games in each region form an equivalence class in which each game has the 
same set of minimal winning coalitions. Although the hyperplanes determine the mini
mal winning coalitions, it is useful to work backwards from the minimal winning coali
tions of a specific equivalence class to understand the relationship to the hyperplanes.  
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For example, games in R7 from FIGURE 2 have minimal winning coalitions { 1 ,  2} and 
{ 1 ,  3 } .  These coalitions not only ensure that x1 + x2 :::: q and x1 + x3 :::: q, but also that 
x1 < q, x2 < q, x3 < q and x2 + x3 < q. Because x1 + x2 + x3 = 1 ,  the inequalities 
that involve sums are rewritten as x3 ::::; 1 - q, x2 ::::; 1 - q, and x1 > 1 - q. It follows 
that a point (x1 , x2 , x3 ) is in R7 if and only if 1 - q < x1 < q, x2 < 1 - q < q and 
x3 < 1 - q < q. A point's relationship to the 6 hyperplanes places it into one of the 
equivalence classes. 

TABL E  1: Regions and the i r  correspon d i ng w i n n i ng and m i n i mal  w i n n i ng 
coa l itions 

Region Winning Coalitions Minimal Winning Coalitions 

R1 { 1 } ,  { 1 ,  2} , { 1 ,  3 } ,  { 1 ,  2 ,  3 }  { 1 }  

R2 {2} , { 1 , 2} , {2, 3 } ,  { 1 , 2 , 3 }  {2} 

R3 {3 } ,  { 1 , 3 } ,  {2, 3 } ,  { 1 , 2 , 3 }  {3}  

R4 {2, 3 } ,  { 1 ,  2, 3 }  {2 ,  3}  

Rs { 1 ,  3 } ,  { 1 ,  2, 3 }  { 1
' 

3 }  

R6 { 1 ,  2 } ,  { 1 ,  2, 3 }  { 1 ,  2 }  

R1 { 1 ,  2 } ,  { 1 ,  3 } ,  { 1 ,  2, 3 }  { 1 ,  2 } ,  { 1 ,  3 }  

Rs { 1 , 2 } ,  {2, 3 } ,  { 1 , 2 , 3 }  { 1 ,  2 } ,  { 2 ,  3 }  

R9 { 1 ,  3 } ,  {2, 3 } ,  { 1 ,  2, 3 }  { 1 ,  3 } ,  {2 ,  3 }  

Rw for q s 2/3 { 1 ,  2}, { 1 ,  3 } ,  {2, 3 } ,  { 1 ,  2 ,  3 }  { 1 ,  2 } ,  { 1 ,  3 } ,  {2,  3}  

Rw for q > 2/3 { 1 ,  2 ,  3 } :  { 1 , 2 , 3 }  

Measuring the power of voters in simple weighted-voting games The weight of 
a voter coarsely measures how important, or how much power, an individual brings to 
a coalition. More refined measures of power-things called power indices-calculate 
a player's contribution to a political process and are used to determine the fairness of 
different political institutions under different assumptions about how coalitions form, 
the size of coalitions, a player's role in changing a coalition from losing to winning or 
winning to losing, etc. As opposed to looking at how individuals vote on a particular 
issue, power indices measure a priori power, due to the structure of the institution. This 
power is determined by which coalitions are winning or losing, assuming a distribution 
over all possible ways in which the voters may vote. 

There are many specialized power indices (as introduced in [1, 6, 8, 22, 29]) 
that measure different aspects of power. But, in general, for a normalized quota 
q E ( 1 /2, 1 ] ,  a power index Pq is a discrete map from the (n - I)-simplex of normal
ized n-player, simple weighted-voting games to vectors in JRn where the i th entry of 
the vector represents the power of the i th player. If all voters, including i ,  in a coalition 
S vote "yes," then voter i influences the election outcome when v (S) - v (Sj{i }) = 1 .  
Summing over all possible coalitions of voters, the power of voter i is 

Pq (X) ; = I>·s [v (S) - v (S/{i }) ]  
S�N 

where the As coefficients depend on the specific power index used. (Notice that if 
i (j_ S, then v (S) - v (S/{i }) = 0.) Regardless of the definition of the coefficients As, 
the geometry of the domain and the hyperplanes that slice the simplex into parts (that 
indicate the winning and losing coalitions) are the same, creating equivalence classes 
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of games with the same power. Often, the power r = (r1 , r2 , . . .  , rn ) for a simple 
weighted-voting game is normalized so that r1 + · · · + rn = 1 and is written as r1 : 
r2 : . . .  : rn . 

Two commonly used power indices that are taught in general education courses at 
the undergraduate level [7] and sometimes used in upper level courses [12, 16] are the 
Banzhaf and Shapley-Shubik power indices. In 1965, Banzhaf introduced his power 
index in a lawsuit while arguing that voting among the Nassau County (NY) Board of 
Supervisors was not fair [1] . For the Banzhaf power index, As = 1 for all S. Hence, 
the Banzhaf index counts the number of times that a voter is necessary to be part of a 
coalition for a measure to pass .  This necessary voter is referred to as a critical voter. 

The Shapley-Shubik power index [29] applies the Shapley value, a solution concept 
from cooperative game theory [26] , to simple weighted-voting games. For the Shapley
Shubik power index, As = ( l S I  - 1 ) !  depends on the number of voters in S.  Intuitively, 
the Shapley-Shubik power index measures the power of a voter given every sequence 
of "yes" votes .  If v (S) - v (S / { i }) = 1 ,  then the I S l  voters could join the coalition in 
any order. In ( I S  I - 1 ) !  of these orders, voter i joined the coalition last and changed the 
coalition from losing to winning. In this case, voter i is referred to as a pivotal voter. 

For 3 voters, the Banzhaf and Shapley-Shubik power indices may assign different 
normalized powers to the same game, but they always agree on the relative ranking of 
the voters' powers [23] . It follows from the definitions of a dummy voter and a dictator 
that the power of a dummy is 0 while the normalized power of a dictator is 1 .  To get a 
better sense of how to calculate power for a 3-voter game, we return to the stockholder 
game. 

Measuring the power of the stockholders The stockholder game in the 
introduction normalizes to [ 1 0/ 15 ;  8/ 1 5 , 5/ 15 ,  2/ 15 ] .  The 3 winning coali
tions { 1 ,  2, 3 } , { 1 ,  2} , and { 1 ,  3} yield the following positive differences, all 
equal to 1 :  v ({ 1 ,  2, 3 }) - v ({2, 3 } ) ,  v ({ 1 ,  2}) - v ({2}) ,  v ({ 1 ,  3 }) - v ({3}) ,  

v ({ 1 ,  2}) - v ({ 1 } ) ,  and v ({ 1 , 3 } ) - v ({ 1 } ) .  
From the general definition of  a power index, the power associated with the 

stockholder game is 

( 8 5 2 ) Pw/15 15 '  
1 5

, 15 = (A( l ,2, 3J + Ap,2J + A(l , 3 J • Ap ,2J • A ( l , 3 J) . 

It follows that the Banzhaf power index for the stockholder game is 3 
1 : 1 because As = 1 for all S. And, the normalized Banzhaf power index is 
3/5 : 1 /5 : 1 /5 .  The coefficients of the nonzero differences in the Shapley
Shubik power index are Ap ,2, 3 l = (3 - 1 ) !  = 2, Ap ,2J = (2 - 1 ) !  = 1 and 
Ap,3J = (2 - 1 ) !  = 1 .  The Shapley-Shubik power index for the stockholder 
game is 4 : 1 : 1 ,  which normalizes to 4/6 : 1 /6 : 1 /6.  Notice that the Banzhaf 
and Shapley-Shubik power indices agree that voter 1 has the most power while 
voters 2 and 3 have equal power less than voter 1 .  

Geometry of paradoxes of voti ng  power 

Because of the hyperplane partition, a game in the interior of a part or equivalence class 
may not change parts under a small perturbation of its weights. Only upon passing a 
hyperplane would we expect to see the power change. Keeping the weights fixed and 
changing the quota will result in the hyperplanes shifting, changing the size, shape, and 
number of equivalence classes. Adding or subtracting voters changes the dimension of 
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the simplex, as well as the possible power outcomes on the parts. These changes in 
geometry may result in counterintuitive behavior. 

Domain effects The stockholder game of the introduction is an example of the para

dox of redistribution in which a voter's  weight increases and its power decreases or a 
voter' s  weight decreases and its power increases. The geometry of the simplex readily 
explains how the paradox arises. Because simple weighted-voting games are domain 
points on the simplex, a change in the weight of one voter (or coordinate) must be met 
with changes in the weight of at least one other voter, too. In fact, the paradox stems 
from the words "at least" in the last sentence. Often times, changes involve more than 
2 players ; the case of only 2 players is discussed later. 

The paradox of redistribution was first noted by Fischer and Schotter [11] . Schotter 
[25] used simplices to determine the likelihood of the paradox for the Banzhaf and 
Shapley-Shubik power indices. However, the paradox is not an artifact of the particular 
power index used. 

More is not always better: Carlos bnys more shares in the stockholder 
game Recall that the normalized stockholder game from the introduction 
[ 10/ 1 5 ;  8/ 1 5 ,  5 / 1 5 ,  2/ 15 ] ,  or Ga in FIGURE 3 ,  has 3/5 : 1 /5 : 1 /5 as its 
normalized Banzhaf index. When Anneliese sells 1 00 shares to Brian and 
100 shares to Carlos, the resulting game [ 1000; 600, 600, 300] normalizes to 
Gb = [ 1 0/ 1 5 ;  6/ 1 5 ,  6/ 15 ,  3/ 15 ] ,  shown in FIGURE 3 . (The nonreduced frac
tions allow the games to be compared easily.) For Gb, the normalized Banzhaf 
index is 1 /2 : 1 /2 : 0. (This follows from symmetry: Since { 1 ,  2} is the only 
minimal winning coalition, voters 1 and 2 each have power Ap ,2J + Ap ,2, 3l ,  be
fore the power is normalized. Hence, voters 1 and 2 split the power equally.) 
FIGURE 3 shows how redistributing the weights from Ga to Gb passes a hyper
plane with G a on the border of region R1 and Gb in region R6 (with the regions 
defined as in FIGURE 2 and TABLE 1 ) ,  resulting in an increase of power for 

(0, 0, 1) 

( 1, 0, 0) (0, 1, 0) 
G [ 10 s s 2 ] · th al' d B haf · d 3 1 1 a = 15 ;  15 ,  15 ,  15 w1 norm 1ze anz m ex 5 : 5 : 5 
G [ 10 • 6 6 3 ] . h al' d B haf . d 1 • 1 • 0 b = 15 ,  15 ,  15 ,  15 w1t norm 1ze anz m ex 2 . 2 . 

Figure 3 The paradox of redistribution (in the stockholder example) as an effect of pass
ing a hyperplane: When Ga -+ Gb, player 3's weight increases but its power decreases. 
When Gb -+ Ga, player 3's weight decreases but its power increases . 
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Brian and a decrease in power for Carlos. The paradoxical behavior present in 
the stockholder game holds for any power index (with positive A.s) :  Although 
Carlos increases the number of his shares,  he becomes a dummy voter because 
the weights of the other voters change too. 

For 3-voter simple weighted-voting games, it  is not possible to have both a player's 
weight increase and power decrease, and another player's weight decrease and power 
increase. However, this may happen in a 4-voter game, as this next example demon
strates. Further, the weights of the other two voters in the example change in a way 
that matches our intuition: one player has both her weight and power increase, while 
another player has his weight and power decrease. This shows that anything can hap
pen ! The effect of a change of the weight of a player depends on how the weights of 
other players change, too. 

Anything can happen! The game [70; 40, 30, 20, 1 0] has normalized Banzhaf 
power index of 0.5 : 0 .3 : 0 . 1 : 0 . 1 .  Suppose that players 1 and 4 have their 
weights increase to 46 and 18 ,  respectively, while players 2 and 3 have their 
weights both decrease to 18 .  The resulting game is [70; 46, 18 ,  1 8 ,  1 8] ,  which 
has 0.4 : 0.2 : 0.2 : 0.2 as its normalized Banzhaf power index. The changes to 
the weights of players 2 and 4 confirm our intuition: an increase (decrease) in 
weight resulted in an increase (decrease) in power. The changes to the weights 
of players 1 and 3 defy our intuition: an increase (decrease) in weight resulted in 
a decrease (increase) in power. 

Felsenthal and Machover [10] considered an even more counterintuitive version of 
the paradox of redistribution called the donation paradox. They showed that if the 
power index doesn't  satisfy a monotonicity condition, then it is possible for a voter to 
donate some of its weight to another voter (while all other weights remain the same) 
and the donor's  power increases while the recipient's power decreases ! Although this 
requires a nonmonotone power index, the geometry behind the paradox remains the 
same: a perturbation in the weights of the players causes the game to pass a hyperplane. 

Partition effects So far we have considered the effect of changing the weights of the 
game. However, it is possible to achieve paradoxical outcomes by leaving the weights 
fixed and changing the quota. In general, the quota affects the size and number of parts 
in the partition of the simplex. FIGURE 2 demonstrates how the geometry of the parts 
change as the quota changes for 3-voter games. Of course, changing the quota may 
have consequences for institutions. For example, Dreyer and Schotter [9] considered 
the effect of changing the quota for the International Monetary Fund. 

We might expect that lowering the quota benefits the voter with the largest weight. 
Winning coalitions from before will be retained. However, the critical voters may 
change. And, new winning coalitions may form. Perhaps lowering the quota hurts the 
voter with the largest weight ! Because decreasing the quota does not always benefit 
the voter with the largest weight, I refer to this as the quota paradox. The following 
example demonstrates two scenarios in which the same weights are used to show how 
the quota affects the voter with the largest weight. 

Changing the voting rule may be good or bad: the quota paradox Con
sider the effect on power as q decreases from 8/ 1 1  to 7/ 1 1  to 6/ 1 1  for the 
game [q ; 5/ 1 1 , 4/ 1 1 ,  2/ 1 1 ] .  Under the Shapley-Shubik power index, these three 
games have power indices 1 /2 : 1 /2 : 0, 4/6 : 1 /6 : 1 /6, and 1 /3 : 1 /3 : 1/3 ,  
respectively. The voter with the largest weight initially benefits from a decrease 
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in the quota, but a further decrease in the quota lowers the power of voter 1 .  
FIGURE 4 depicts this quota paradox. 

(0, 0, 1 )  

( 1 ,  0, 0) (0, 1 ,  0) ( 1 ,  0, 0) 

(0, 0, 1 )  

(0, 1 ,  0) ( 1 ,  0, 0) 

(0, 0, 1 )  

(0, 1 ,  0) 

Figure 4 As the quota decreases from q, = 8/11 ( left), q2 = 7/11 (m idd le), and q3 = 

6/11 (r ight) games with weights 5/11, 4/11, 2 /11 l ie i n  regions R6, R7, and Rw, respec
tively 

There are other ways to adjust the size and number of parts of the partition of 
the simplex. Kilgour [15] introduced the paradox of quarreling members in which 
quarreling members' powers may increase despite restricting the coalitions they may 
enter together. Specifically, if two voters quarrel, they will never both vote "yes" on 
a measure. Even though they refuse to be part of the same winning coalition, it is 
possible that the power of one of these voters increases. This is paradoxical because 
restricting the coalitions that can form hurts the quarreling members by restricting 
their freedom and decreasing their options. However, the restriction also eliminates 
options for the nonquarreling members, possibly making the quarreling members more 
powerful. The two quarreling members are not assumed to always be on opposite sides 
of a vote; they may both vote "no." 

Measuring the power of the voters when certain coalitions cannot form requires 
modifications of the power indices . Clearly, certain sequences of voters necessary to 
compute the Shapley-Shubik power index would be impossible, as they would require 
quarreling members both to vote in the affirmative. The following example demon
strates how quarreling members reduces the number of regions in the partition. After 
the geometric interpretation, I provide an alternative view to compute the power index 
for a game with quarreling members. 

The paradox of quarreling members: Fewer options may be better Sup
pose voters 1 and 3 quarrel. This means that coalitions { 1 ,  2, 3} and { 1 ,  3} will 
never be winning coalitions . In particular, because { 1 ,  3} cannot form, then the 
hyperplane x1 + x3 = q (or equivalently, x2 = 1 - q)  is not used to partition the 
simplex. Hence, when voters 1 and 3 quarrel, the simplex is partitioned into fewer 
regions. For a normalized quota of 3/4, the simplex is divided into 7 regions or 
equivalence classes, Q 1 - Q7, as in FIGURE 5 .  

Consider the simple weighted-voting game [3/4; 1 /4, 2/4, 1 /4] . When vot
ers 1 and 3 do not quarrel, this game is on the boundary of R8 from FIGURE 2 
and has a normalized Banzhaf power index of 1 /5 : 3/5 : 1 /5 .  When voters 1 
and 3 do quarrel, then the only winning coalitions are { 1 ,  2} and {2, 3 } ,  because 
{ 1 ,  2, 3} cannot form. Voter 2 is critical twice while voters 1 and 3 are each crit
ical once. Under the normalized Banzhaf power index, the game with quarreling 
has a power index of 1 /4 : 1 /2 : 1 /4. In this case, despite having fewer options, 
both voters 1 and 3 had their powers increase because of the quarrel. 
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(0, 0, 1) (0, 0, 1) 

(1, 0, 0) (0, 1, 0) ( 1, 0, 0) (0, 1, 0) 
Normalized Banzhaf Power Index: � : � : � Normalized Quarreling Banzhaf Index: � : ! : � 
Figure 5 The paradox of quarreling members: Players 1 and 3 quarrel resulting in the 
removal of a hyperplane that decreases the number of parts in the partition 

Another way to view the power index computation for a game with quarreling 
members i and j is to set J...s = 0 if both i and j are in S. In the example, { 1 ,  2, 3}  
could still be considered a winning coalition, but J...p ,2,3 l would be 0, giving the term 
v({ l , 2, 3 } )  - v( { l , 3})  = 1 no weight in the power calculation. 

Dimensional effects Rich, and often paradoxical, behavior exists when voters are 
introduced or removed from a game. Because it is too difficult to visualize the geome
try of a 4-voter game, I will focus on changing the number of voters between 2 and 3 .  
The space of all 2-voter games i s  a 1 -simplex o r  interval I = { (w1 , w2) I w1  + w2 = 
1 and w; :=:: 0 for both i }  with left endpoint ( 1 ,  0) and right endpoint (0, 1 ) ,  as in FIG
URE 6.  For any quota q, the unit interval is partitioned into 3 regions in which the 
minimal winning coalitions are: { 1 } , { 1 ,  2} or {2} ; these are the minimal winning coali
tions for the equivalence classes from left-to-right on the unit interval in FIGURE 6. 
Power for 2-voter games is easily calculated because voter i is a dictator if {i } is the 
only minimal winning coalition and both players share the power equally if the only 
minimal winning coalition is { 1 ,  2} .  

The first paradox focuses on the effect of the introduction of a new voter. The para

dox of a new member was introduced by Brams and Affuso [3, 4] . They introduce a 
new voter into the game while keeping the relative weights of the other voters constant; 
that is, the weights of the original voters are proportional. Felsenthal and Machover 
[10] explained this paradox in a particularly succinct way. The paradox occurs when 
the game [q ; U J ,  u2 , . . .  , unl changes to [q ; V 1 , V2 , • . .  , Vn , Vn+d where Vn+l E [0, 1 ] 
and v; = ( 1 - Vn+1 )u ;  for i = 1 to n and the power of one of the original n voters 
increases. This seems paradoxical because introducing the new voter would seem to 
take power away from the other voters, but the following example shows otherwise. 

Power may go up with more people sharing: paradox of a new member 
Consider the 2-voter game [0.75;  0 .7 ,  0 . 3 ] . FIGURE 6 shows the partition of the 
! -dimensional simplex into regions of games that have the same power. Clearly, 
the power under any index with J...p ,2J > 0 is 1 /2 : 1 /2 as both voters are nec
essary for a coalition to be winning. The line in FIGURE 6 shows the possible 
games in which a third voter is added while keeping the ratio of the weights of 
voters 1 and 2 constant. For all the games on this line within region R7 , the power 
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1 : 0 
·o , 0) I j 

I . I 
2 • 2  

[0.75 ;  0 .7 , 0 .3]  

(0, 0, 1)  

(1 ,  0, 0) 

1 1 3 

0 :  1 • 
(0, 1 )  

(0, 1 ,  0) 
Figure 6 The paradox of a new member : Voter 1 's power increases despite the introduc
tion of a new voter 

of voter 1 increases .  As a representative game on the line and in R7 , consider 
[0.75 ; 7/ 13 ,  3 / 1 3 , 3 / 1 3] .  Under the normalized Shapley-Shubik power index, 
the power of voter 1 is 4/6 in the new 3-voter game while under the normalized 
Banzhaf power index the power of voter 1 is 3 j 5 ;  both are greater than 1 /2. 

The paradox of a new member demonstrates that adding a voter to an organization 
may have unanticipated consequences. Researchers have applied power indices to see 
the effect of proposed expansion of the European Union [32, 33] . 

The paradox of large size considers another paradoxical outcome: that a voter who 
annexes another voter (and absorbs its weight) may have less power than the two voters 
would have if the merger did not occur. As we see in the next example, 3 voters are 
sufficient to demonstrate that this paradox is independent of the measurement of power. 

Bigger and fewer is not always better: the paradox of large size By sym
metry, the power of each player for the simple weighted-voting game G a = 

[3/4; 1 /3 ,  1 /3 ,  1 /3]  is 1/3 .  If voter 1 receives the entirety of the weight of voter 
3 , then the resulting game is Gb = [3/4; 2/3 , 1 /3] ,  as shown in FIGURE 7. As 
both voters are necessary to form a winning coalition, the resulting power is 1 /2 
for each of them. The sum of the power of the first two voters in G a is 2/3 while 
the power of the merged players (player 1 )  in Gb has dropped to 1 /2. 

The paradox of large size is comparable to eliminating a voter and distributing its 
weight to one of the voters. Saari and Sieberg [23] showed that complete reversals 
of the power rankings of voters may occur when adding or subtracting a voter. The 
subtraction of a voter may be viewed as a projection from the (n + 1 ) -voter simplex to 
the n-voter simplex. Because there are many such projections which result in different 
powers in the projected games, it is not surprising that paradoxical outcomes may 
occur. 
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(0, 0, 1 )  

( 1 , 0, 0) 
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G - [ 3 . 1 1 1 ] 
a - 4 •  3 •  3 •  3 

G - [ 3 . 2 1 ] 
b

- 4 •  3 •  3 

(0, 1 , 0) 

Figure 7 The paradox of large s ize:  P layer 3 coa lesces with P layer 1 and the i r  cumu lative 
power decreases 

Combining geometric elements Additional paradoxes may combine more than one 
geometric element. Felsenthal and Machover [10] introduced the fattening paradox in 
which the weight of one voter is increased, while the (nonnormalized) weights of the 
other voters remain fixed, but the (un)lucky recipient of the extra weight has her power 
decrease. This is comparable to changing the position in the simplex of the weights at 
the same time as changing the quota. The following example demonstrates how two 
geometric elements combine in the fattening paradox. 

Bigger may not be better, even if everyone else's weight stays the same: 
the fattening paradox Suppose we start with the game Ga = [8 ;  4, 4, 1 ,  1 ,  1 ]  
and increase the weight of voter 1 from 4 in to 5 ,  producing the game Gb  = 
[8;  5 ,  4, 1 ,  1 ,  1 ]  [10] . Under the normalized Banzhaf power index, the power of 
voter 1 is 1 /2 in Ga (due to symmetry, as voters 1 and 2 are the only two critical 
voters) .  In Gb, the power of voter 1 decreases to approximately 0.474 under the 
normalized Banzhaf power index. The power was calculated using the algorithms 
on Leech' s  website [20]. 

This paradox combines two geometric properties . Not only have the weights been 
changed, but the normalized quota has changed from 8/ 1 1  to 8/ 12. The decrease of 
the normalized quota changes the size and possibly even the number of parts in the 
partition. Geometrically, this may be viewed as moving the hyperplane while also 
redistributing the normalized weights. These two actions cause the game to pass a 
hyperplane. Writing our example in normalized form gives [ 8 4 4 1 1 1 ] [ 8 5 4 1 1 1 ] 

11 ;  u ·  u ·  u ·  u ·  11 --+ 1 2
; 

1 2 ' 1 2 ' 1 2 ' 1 2 ' 1 2  · 

The fattening paradox may be described for a more general, n-voter game. For 
example, if the weight of voter 1 increases by k from x1 to x1 + k, then the game 
changes from [q ; X t , Xz , . . .  , Xn ] to [q ; Xt + k, Xz , . . .  , Xn ] . Normalizing gives 

[ q Xt Xz Xn ] [ q Xt + k Xz Xn J X ; X ' X , . . .  , X 
--+ 

X + k
; X + k ' X + k ' ' " ' X + k  
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where X = I:7=1 X; . Geometrically, the normalized quota has decreased from q I X to 
q j (X + k) , changing the hyperplanes, at the same time as the game moves proportion
ally in the direction of the ( 1 ,  0, . . .  , 0) -vertex of the simplex. Moving proportionally 
in the direction of a vertex is a process comparable to adding or subtracting a player. 
Hence, the fattening paradox has elements of each of the geometric properties. 

Conc l u sion 

The geometry that arises from the partition on the simplex of simple weighted-voting 
games is a natural way to classify paradoxical outcomes in voting power. Although the 
names of the paradoxes do not indicate the geometry behind the paradox, three geo
metric properties :  passing a hyperplane, altering the number and/or size of the parts of 
a partition, and projecting to or from a boundary are the building blocks for the para
doxes. Not only does the geometry provide a tool to analyze paradoxes, but also a tool 
to construct new ones. Concentrating on paradoxes in low dimensions helps to visual
ize the geometry of the paradoxes .  Of course, paradoxes occur in higher dimensions, 
too. Leech [20] provides online access to

· 
algorithms to compute power indices for 

large games, which will help you to create your own paradoxes for higher dimensional 
games. 
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Proof With o ut Words :  O rder i ng Ar i th met i c, 
G eometr i c, and  H a rmon i c  Means  

The arithmetic mean A (a ,  b) = (a + b)/2, the geometric mean G (a ,  b) = Jab, and 
the hannonic mean H (a ,  b) = 2abj (a + b) can be seen from the picture to satisfy 
H (a ,  b) :::=: G (a ,  b) ::::: A (a ,  b) , with equality if and only if a =  b.  
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It's  hard to avoid Chebyshev polynomials .  They appear in just about every branch 
of mathematics, including geometry, combinatorics, number theory, differential equa
tions, approximation theory, numerical analysis, and statistics. (Rivlin [6] gives numer
ous examples .) Their significance can be immediately appreciated by the fact that the 
function cos nO is a Chebyshev polynomial function of cos e .  Specifically, for n :::: 0, 

cos (nO) = Tn (cos(O) ) , ( 1 )  

where Tn is the Chebyshev polynomial of the first kind, defined b y  To (x) = 1 ,  T1 (x) = 

x ,  and for n :::: 2, 

(2) 

For example, T2(x) = 2x2 - 1 ,  T3 (x) = 4x3 - 3x , T4 (x) = 8x4 - 8x2 + 1 . This gen
erates the familiar trigonometric identity cos(20) = 2 cos2 e - 1 ,  and the less familiar 
cos(30) = 4 cos3 e - 3 cos () and cos (40) = 8 cos4 () - 8 cos2 () + 1 . 

If we change the initial conditions to be U0 (x) = 1 and U1 (x) = 2x , but keep the 
same recurrence 

we get the Chebyshev polynomials of the second kind. For instance, U2 (x) = 4x2 - 1 ,  
U3 (x) = 8x3 - 4x, U4 (x) = 16x4 - 12x2 + 1 . 

The Chebyshev polynomials generate many fundamental sequences, including the 
constant sequence, the sequence of integers, and the Fibonacci numbers. It's easy to 
show that for all n :=:: 0, Tn ( 1 )  = 1 and Un ( l )  = n + 1 ,  Tn (- 1 )  = (- l )n , Un (- 1 )  = 

(- l)n (n + 1 ) . When we substitute complex numbers, such as x = i /2, the Fibonacci 
and Lucas numbers appear. Specifically, 

(3) 

and 

(4) 

where fn = fn-1 + fn-2 • and Ln = Ln-1 + Ln-2 • with initial conditions fo = !1 = 1 ,  
and L0 = 2 ,  L 1 = 1 . (We note that the "classical" Fibonacci numbers are defined by 
F0 = 0 and F1 = 1 ,  but fn = Fn+1 is more natural for combinatorial purposes.) In 
fact, any sequence of numbers that satisfies a second order recurrence with constant 
coefficients can be expressed in terms of Chebyshev polynomials [1] .  
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Here we list a few more intriguing identities satisfied by the Chebyshev polynomi
als .  For m ,  n ::: 0, 

n 
Un (X) = L:>j Tn-j (X) 

j=O 
Tm (Tn (x)) = Tmn (X) 

Finally, if we define Un (x) = Un-I (x) , then 

gcd(Um (X) , Un (X)) = Ugcd(m ,n) (X) 

(5) 

(6) 

(7) 
All of the identities above can be proved by induction and various algebraic meth

ods. The point of this article is to show that these identities, and many others, can 
also be given elegant combinatorial proofs, once we understand what the Chebyshev 
polynomials are counting. 

Combinator ia l  models for Un(x) 
So what do Chebyshev polynomials count? As motivation, consider the combinatorial 
model for the Fibonacci numbers. It's easy to show [3, 4] , that the Fibonacci number 
fn counts the ways to tile a 1 x n strip using 1 x 1 squares and 1 x 2 dominoes of 
length two. For example, /4 = 5 counts the five tilings of length four below. 

I I I I I I I I I I I I I I I 
Figure 1 The fourth Fibonacci number f4 = 5 is the number of square-domino til ings of 
length four 

As it turns out, Chebyshev polynomials count the same objects as Fibonacci num
bers, but we assign a weight to each tile. Specifically, we assigri each square a weight 
of 2x and each domino a weight of - 1 ,  and define the weight of a tiling to be the prod
uct of the weights of its tiles. We provide the tilings of lengths two, three, and four, 
along with their respective weights, in FIGURE 2, and we see that their weights sum to 
Chebyshev polynomials, U2(x) ,  U3 (x) ,  and U4 (x) . 

This suggests the following theorem, originally due to Louis Shapiro [7] . 

l 2x l2x  I 0 U2 (x) = 4x2 - 1 

4x2 - 1 

l 2x  l 2x  l2x  I .--1 -- 1---r-l2x-,l l 2x  I - I  I U3 (x )  = 8x3 - 4x 

-2x -2x 

1 2x l 2x l2x l 2x l l - I  1 2x l 2x l l 2x l - 1 12x l 
1 6� -�2 -�2 

l 2x l 2x l  - 1  I I  - 1  I - 1  I U4 (x) = 1 6x4 - 1 2x2 + 1  

+ I  

Figure 2 U2 (x) = 4x2 - 1 , U3 (x) = Bx3 - 4x, U4 (x) = 1 6x4 - 1 2x2 + 1 is the total 
weight of al l til ings of length two, three, and four, respectively 
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THEOREM 1 . For n :::: 0, Un (x) is the sum of the weights of all square-domino 
tilings of length n. 

Proof. Let Wn denote the total weight of all tilings of length n. It' s  easy to verify 
that Wo = 1 = Uo (x) ,  WI = 2x = UI (x) ,  and w2 = 4x2 - 1 = U2 (x) .  Every tiling of 
length n :::: 2 comes from a tiling of length n - 1 followed by a square (of weight 
2x) or comes from a tiling of length n - 2 followed by a domino (of weight - 1). 
Hence, Wn = 2xwn- I  - 1 Wn_2 . Then, by induction and the recurrence for Un , Wn = 
2x Un- I  (x) - Un-2 (x) = Un (x) ,  as desired. • 

Notice that a tiling of length n with k dominoes has exactly n - 2k squares and 
therefore has weight ( - 1 )k (2x )n-2k . We leave it to the reader to show that the number 
of such tilings is e;k) , which gives us the following closed form for Un (X) .  

IDENTITY 1 . For n :::: 0, 

Un (X) = � (n - k) (- 1 )k (2x)n-2k . 
k=O k 

Moreover, if we let x take on the imaginary value x = i j2, we see that for 0 ::::: k ::::: 
nj2, every length n tiling with k dominoes has weight ( - 1)k in-2k = i n , independent 
of k. Since there are fn tilings of length n ,  we have Un (i /2) = i n fn , and therefore we 
have the following Fibonacci identity 

IDENTITY 2 . For n :::: 0, i -n un (i /2) = fn · 
The following "addition formula" is also easy to see, once we define the concept of 

breakability. We say that a tiling is unbreakable at cell m if a domino covers cells m 
and m + 1 ; otherwise we say the tiling is breakable at cell m.  

IDENTITY 3 .  For all m , n :::: 1 , 

Proof. The total weight of length m + n tilings that are breakable at cell m is 
U m (x) Un (x) (by the distributive law). All tilings that are unbreakable at cell m consist 
of a tiling of length m - 1 followed by a domino (with weight - 1) followed by a tiling 
of weight n - 1 , and thus have total weight - Um-I (x) Un-I (x) .  • 

There is another way to interpret Un (x) combinatorially, which is a little more "col
orful." Consider the set of colored tilings, where dominoes have just one color (light 
gray), but squares come in two colors (white or black). (Incidentally, the number of 
such tilings is the nth Pell number Pn • defined recursively by Po = 1 , P I  = 2 and 
for n :::: 2, Pn = 2Pn- I + Pn-2 ·) As in the previous model, we assign all dominoes a 
weight of - 1 , but since 2x = x + x , we can assign each white square a weight of x 
and each black square a weight of x .  As before, the weight of a tiling is the product of 
the weights of its tiles .  In FIGURE 3 ,  we list the five colored tilings of length 2 and the 
twelve colored tilings of length 3, along with their total weights. 

Reasoning as before, we have the following theorem. 

THEOREM 2 . For n :::: 0, Un (x) is the sum of the weights of all colored square
domino tilings of length n .  

Having two colors of squares to play with will allow us to prove many interesting 
facts about Chebyshev polynomials (especially of the first kind) . Here is a simple iden
tity that is easy to prove by induction, but the combinatorial technique we introduce 
will be useful to us later on. 
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rn rn rn rn 0 
U2 (x ) = 4x2 - I 

l x l x l x l  l x l x l x l l x l x l x l l x l x l x l  

I X I X I X I I X I X I X I I X I X I X I I X I .I I X I 
- 1  I X I I - 1 I X I I X I - 1  I I X I - 1 

U3 (x ) = 8x 3 - 4x 

Figure 3 Un(x) us i ng colored ti l i ngs, for n = 2 and n = 3 

IDENTITY 4 .  For n � 0, Un O ) = n + 1 .  

Proof If  we assign all squares (black or  white) a weight of x = 1 and each domino, 
as usual, a weight of - 1 ,  then the weight of a colored tiling will be ( - 1  )k ,  where k 
is the number of dominoes. Consequently Un 0 )  counts the number of length n tilings 
with an even number of dominoes minus the number of length n tilings with an odd 
number of dominoes. Given any colored tiling X, we will try to pair it up with another 
tiling X' where the number of dominoes in X and X' have opposite parity. (Or put 
more poetically, we try to find a mate of opposite weight. ) 

Given a tiling X we look for the smallest number k where either (i) cells k and k + I 
are covered by a domino or (ii) cell k is covered by a white square and cell k + I is 
covered by a black square. If case (i) occurs, then we define X' to be the same tiling 
as X but with the first domino replaced by wb, where w denotes a white square and b 
denotes a black square. If case (ii) occurs, we replace the first wb with a domino. Thus 
X and X' have opposite weight. Notice that (X')' = X ,  whenever X' is defined. 

When is X' undefined? Whenever X has no dominoes and no occurrence of wb, 
that is, whenever X = bj wn-j (j black squares followed by n - j white squares) for 
some 0 :=:: j :=:: n .  Thus, there are n + 1 exceptional tilings, all of which have positive 
weight (since they have no dominoes), and therefore Un O )  = n + 1 .  • 

Comb i nator ia l  mode l s  for Tn (x) 

Chebyshev polynomials of the first kind have at least four useful combinatorial inter
pretations using tilings. Since they satisfy the same recurrence as Chebyshev polyno
mials of the second kind, but with different initial conditions, then they only differ in 
how they weight the initial tile [4, Chapter 3]. As before, we define the weight of a 
length n tiling of squares and dominoes to be the product of the weights of its tiles, 
where each domino has weight - 1  and each square has weight 2x , but if the tiling 
begins with a square then that initial square has weight x .  For example, the tilings for 
Tn (x) ,  with n = 2, 3 ,  4 are given in FIGURE 4. 

The following "uncolored" interpretation has essentially the same proof as Theo
rem 1 .  

THEOREM 3 .  Tn (x) is the total weight of all uncolored tilings of length n, where 
an initial square has weight x, all other squares have weight ix, and all dominoes 
have weight - 1 . 

Reasoning as in Identity 3 ,  we get an addition formula for Tn (x) .  

IDENTITY 5 .  For m ,  n � 1 ,  Tm+n (x) = Tm (x) Un (x) - Tm- l (x ) Un- l  (x) .  
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rn 0 T2 (X) = 2x2 - l 

l x l 2x l 2x l I - 1  l 2x l l x i - J I T3 (X ) = 4x3 - 3x 

l x l 2x l 2xl 2x l l - J  l 2x l 2x l l x l  - 1  l 2x l 
I x l 2x l  - 1  I I - 1  I - 1  I T4 (x ) = 8x4 - 8x 2 + I  

Figure 4 The weight of u ncolored ti l i ngs as counted by Tn(x) 

We note that Identities 3 and 5 remain true when m = 0 or n = 0 provided we 
extend the recurrence so that L 1 (x) = x and U _ ,  (x) = 0. 

Chebyshev polynomials of the first kind can also be thought of as counting circular 
tilings of bracelets. Specifically, if we take the previous model and multiply the weight 
of the initial tile by two, then all squares would receive a weight of 2x , but now an 
initial domino has weight -2. We can think of this as counting two types of initial 
dominoes (each with weight - 1 ) . A domino of the first type will cover cells I and 2, 
as usual, but a domino of the second type will cover cells n and I , as in FIGURE 5 ,  
giving us the following theorem. 

THEOREM 4 .  2Tn (x) is the total weight of all uncolored circular tilings of length 
n, where each square has weight 2x and each domino has weight - 1 . 

T4 (x) = 8x4 - 8x2 + 1 

Figure 5 2 T0(x) cou nts weighted bracelets 

By considering whether or not a bracelet has a domino covering cells n and I , we 
have 

IDENTITY 6 .  For n � 1, 2Tn (X) = Un (X) - Un-2 (x) .  
How many bracelets of length n have exactly k dominoes? By considering whether 

or not it has a domino covering cells n and 1 ,  there are (n - k - 1) + (n - k) = _
n (n - k) 

k - 1 k n - k k 
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such bracelets. Thus by  the reasoning that precedes Identity I ,  we have a similar closed 

form for Tn (x) .  
IDENTITY 7 .  For n > 0, 

I Ln/2J ( k) Tn (X) = - L _
n

_ 
n - (- Ii (2x)n-2k . 2 k=O n - k k 

Since the number of length n bracelets is well known to be the Lucas number Ln 
[4, Chapter 2] . So just like with Identity 2, we have 

IDENTITY 8 .  For n ::: 0, 2i
-nTn (if2) = Ln .  

Other useful identities are obtained by allowing our squares to come in two colors. 
As an immediate consequence of Theorem 3, we have 

THEOREM 5 .  Tn (x) is the total weight of all colored tilings of length n, where an 
initial square has weight xj2, all other squares have weight x, and all dominoes have 
weight - I . 

Alternatively, we can allow all squares, to have weight x, but now we restrict the 
color of an initial square. 

THEOREM 6 .  Tn (x) is the total weight of all colored tilings of length n, where all 

squares have weight x, all dominoes have weight - I, but the tiling may not begin with 
a black square. (Alternatively, Tn (x) is the total weight oftilings that do not begin with 

a white square. ) 

In FIGURE 6, we list the restricted colored tilings counted by Tn (x) ,  for n = 2 and 
n = 3 .  

rn rn 0 
T2 (x) = 2x2 - 1 

l x l x l x J l x l x l x l l x l x l x l  l x l x l x J 
- 1 I X I I - 1 · I X I I X I - I  I 

T3 (x)  = 4x3 - 3x 

Figure 6 Examples of Tn(x) using restricted colored tilings 

This tiling interpretation of Tn (x) was exploited combinatorially by Walton [8] to 
prove many Chebyshev polynomial identities. For example, by applying the same ar
gument as done in Identity 4, we invite the reader to combinatorially prove 

IDENTITY 9 .  For all n ::: 0, Tn ( I )  = 1 .  

Here is another quick proof of something we call the "string of  lights" identity. 

IDENTITY I O . For n  :=:: 1, Tn (X) = L�=1 (xj Tn-j (X)) - Un-2 (x). 
Proof A restricted tiling must either begin with a domino or a string of white 

squares. The total weight of tilings of length n that begin with exactly j :=:: I white 
squares is xj Tn-j (x) since the tile that follows the first j white squares is restricted to 
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be a domino or a dark square. The total weight of those tilings that begin with a domino 
is -Un_2 (x) since the initial domino has weight - 1  and the remaining colored tiling 
is unrestricted. • 

We invite the reader to combinatorially prove 

IDENTITY 1 1 .  For n  � 1, Un (X) = Tn (X) + xUn- ! (x) .  

With more ingenuity, Walton [8] presents combinatorial proofs of trickier identities .  
For example, for n � m � 0, 

and for m ,  n � 0, 

We will come back to this last identity in the next section. 
At this point, we should expose the fact that some of the identities presented here 

are true for any sequence satisfying a second order recurrence with constant coeffi
cients . If u_ 1 = 0, uo = 1 ,  and Un satisfies the recurrence Un = aun- ! + bun-2 • then 
Un is the total weight of all tilings of length n where squares have weight a, dominoes 
have weight b, and the weight of a tiling is the product of its weights [3]. (Ironically, 
these are called Lucas sequences of the first kind, but they correspond to Chebyshev 
polynomials of the second kind.) Thus we immediately obtain generalizations of some 
of our earlier identities like 

Un = L n - k 
bk an-2k 

Ln/2J ( ) 
k=O k 

and 

The constants a and b can be real or complex numbers, but they could also be polyno
mials. Moreover if a and b are relatively prime integers, and if we define Un = un-J .  
then it can be shown by combinatorial argument [3] that 

The same line of reasoning will work when a and b are relatively prime polynomials 
like 2x and - 1 ,  which explains equation (7) in the introduction. 

Com b i n ator ia l  t r igonometry 

Finally, we come full circle and explain the trigonometric identity ( 1 )  at the beginning 
of the paper, namely 

IDENTITY 1 2 . For n � 0, cos(nO) = Tn (cos O ) . 

Readers may wish to prove this theorem by induction, using the definition of 
Tn+ 1 (x) and two applications of the angle addition formula for cosine. But the com
binatorial proof, due to Benjamin, Ericksen, Jayawant, and Shattuck [2], is more fun 
and leads to other insights. 
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Proof. From Theorem 3 ,  Tn (cos B) i s  the total weight of all tilings of length n where 

each domino has weight - 1  and each square has weight 2 cos () ,  except for an initial 
square, which has weight cos O .  But how do we combinatorialize cos () ?  First, we use 
a formula from Euler 

e;e + e-i& 
cos () = 

2 

Then we assign to each square, except for an initial one, the weight e;8 + e-i& , and 
half that weight to an initial square. Next, we introduce colored squares, but this time 
the white and black squares are given different weights: the weight of a white square is ei8 and the weight of a black square is e-i& (except for an initial colored square, whose 
weight will be 4ei8 or 4e-i8 ) . Thus, for example, the colored tiling in FIGURE 7 has 

weight !e3i8 • 

I � I ei & ' ei& l e - i O  I ei& l - I  I ei& l e - i B  I - I 

i 
fir t impurity 

Figure 7 A colored ti l i ng with weight t e3 ;e 
Reasoning as in Theorem 5 ,  Tn (cos ())  is the sum of the weights of all of these 

colored tilings. Our goal is to show that this sum is nearly zero. We say that a colored 
tiling is impure if it contains two consecutive square tiles of opposite color or at least 
one domino. In a colored tiling, we will call a domino or two consecutive squares of 
opposite color an impurity. For example, the tiling in FIGURE 7 has its first impurity 
at cells 3 and 4. 

Next we claim that the sum of the weights of all impure tilings is zero. Let X be an 
impure tiling with its first impurity on cells k and k + I .  We consider two cases. 

First consider the case where k 2: 2. If cells k and k + I are squares of opposite 
color, then we "find a mate of opposite weight" X' by replacing those two squares 
with a domino and leave all other tiles the same. If cells k and k + I are covered by a 
domino, then we form X' by replacing the domino with two squares of opposite color 
where the color of the square on cell k is the same as the color of the square on cell 
k - 1 .  Thus (X')' = X.  Moreover, since two squares of opposite color have a weight ei8 e-;e = 1 and a domino has weight - 1 ,  then it is clear that X and X' have opposite 
weight, so their weights sum to zero, as in FIGURE 8 .  

fir t i mpurity 
! 

Figure 8 Th i s  t i l i ng X' is the mate of the previous one and has weight - t e3 i8 
On the other hand, if k = 1 ,  then we "find a trio that sums to zero" by creating 

tilings X1 and X2, which are identical to X except for the first two cells. Among X, 
X� > and X2, one of them begins with wb (with weights that multiply to I /2) one of 
them begins with bw (with weights that multiply to 1 /2) and the other begins with a 
domino (with weight - 1 ) .  Thus the weights of X,  X � >  and X2 sum to zero. 
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Consequently, every impure tiling belongs to a pair or trio with weights that sum 
to zero. Thus Tn (cos B) is just the sum of the weights of the pure tilings. But there 
are only two pure tilings, namely the tiling consisting of n white squares, with weight 
eine j2, and the tiling consisting of all black squares, with weight e-ine j2. Thus 

eine + e-ine 
Tn (cos B) = 2 = cos (nB) ,  

as desired. 

By the same logic, we can generalize the last identity as follows. 

IDENTITY 1 3 .  For n ::::: 0 and any real or complex number z =/= 0, 

Tn c +2
1 / Z ) = 

_zn_+_
2
_1 /:..._z_n 

• 

We note that once the theorem is expressed in this form, it can then be proved easily 
by induction, but the combinatorial proof allows us to anticipate and appreciate this 
generalization. 

By a slightly different argument and using sin e = 
e;o 2�-io 

, we can prove 

sin((n + 1)8)  = Un (cos B)  sin O 

and its generalization 

c -2
1 /z

) Un c -2
1 /z

) = 
zn -

2
1 /zn 

These and other trigonometric identities can also be given combinatorial proofs [2] . 
Identity 12 also leads to a quick proof of the composition theorem mentioned in the 

introduction. 

IDENTITY 1 4 .  For m ,  n ::::: 0, Tm (Tn (x))  = Tmn (x) .  
Proof When X = cos e

' 
we have 

Tm (Tn (cos B)) = Tm (cos(nB))  = cos (mnB) = Tmn (cos B ) .  

Since these polynomials agree at an infinite number of points (namely for all points 
cos B), then they must be the same polynomial. • 

Using a similar argument, there is a composition theorem for the Chebyshev poly
nomials of the second kind, namely 

Um-l (Tn (x)) Un- l (x) = Umn- l (x) .  

For the combinatorial proof enthusiast, both of these composition theorems can also 
be proved using "tilings of tilings" [5, 8] , but some might say that this is going a little 
"overboard." 
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Math B ite :  Sums of S i nes and Cos i nes 
The sums of the title are, for N a natural number greater than 1, 

N (2rrk) L: cos - = 0  
k=l N 

and 
N (2rrk ) L: sin - = 0. 

k= l N 

The proofs of these two identities make a good exercise in complex algebra: Us
ing DeMoivre's Theorem and Euler's formula, ei <2:rr > = (ei2:rrfN)N = 1, we derive the 
identities from the real and imaginary parts of the following equation: 

N ( (2rrk ) (2rrk)) N- l  . (ei2:rrfN )N - 1 "'"' cos -- + i sin -- = "'"' <e'2:rrfN )k = . = 0. � N N � e•2:rrfN - 1 k=l k=O 

It seems that one must enter the realm of the complex numbers to prove this result, 
yet the validity of the identities becomes absolutely clear from the picture that follows. 

N glasses, each 
of mass M 

(X, Y) = ( (I:::=• M cos (2krriN>) j NM , (L::=• M sin(2krriN)) j NM) 
= (-}; L::=• cos (2krr IN) , -}; L::=• sin(2krr IN)) 
= (0, 0) 

-Judy A. Holdener 
Kenyon College 

Gambier, OH 43022 
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The rule generating the Fibonacci sequence is extraordinarily simple, but its repeated 
application produces rich mathematics .  If we leave the rule alone and change the start
ing values, we again find sequences with interesting properties-such as the Lucas 
numbers. If we introduce modular arithmetic, there are new questions to answer. In 
what follows, I study Fibonacci sequences in lF P = 7lf p7l, the integers mod p, where 
p is a prime. I like to call these the "lF pibonacci numbers." Regardless of the start
ing pair, the sequence will repeat [10]. The question I want to answer is "What is the 
maximum period for any Fibonacci sequence in 7lf p7l?" 

In what follows, I present a particular point of view about the Fibonacci sequence 
in a way that gives some insight into both the standard sequence and its variations. 
Specifically, the Fibonacci sequence is interpreted in terms of a matrix acting on a 
finite set, an idea that is related to group actions and to (discrete) dynamical systems. 
The underlying set is the two-dimensional vector space lF P 2 ; the matrix M from (2) 
provides the rule for the process.  Iterations of the system correspond to powers of the 
matrix. Periods in the system are related, then, to powers of M that are equivalent 
modulo p to the identity matrix. The point of view works for all cases, even for the 
generalized lF pibonacci numbers, where weights are allowed in the recursion formula. 
For a thorough look at dynamical systems and number theory, Silverman's book [8] is 
an excellent source. 

Most of what is contained here is not new. Searching Mathematical Reviews turns 
up dozens of articles about periods of Fibonacci numbers in 7lfm7l, including many 
where m doesn' t  even have to be a prime or a power of a prime. The most-referenced 
article is Wall' s  article [10] in the MONTHLY in 1 960. Wall established many funda
mental results, and posed some tantalizing questions.  In particular, he showed that the 
period divides (p - 1)  when 5 is a quadratic residue mod p and divides (2p + 2) when 
it is not, but he did not find the maximal periods. Wall 's investigation was motivated 
by a search for methods of generating pseudorandom numbers. Later, Brent [1], also 
motivated by pseudorandom numbers, considered the special properties of Fibonacci 
sequences modulo a power of 2. The story, however, begins even before the days of 
Mathematical Reviews. In the 1 930s, Ward [11] considered periods, both minimal and 
maximal, and other characteristics of sequences arising from rather general recurrence 
relations, not just the Fibonacci relation. Kalman and Mena's article in an earlier issue 
of this MAGAZINE [5] examines many of the famous properties of the Fibonacci num
bers as specific instances of properties of general second-order recurrences. Ward's 
results built on even earlier work by Carmichael [2] and others. For the early history 
of the subject, the curious reader should consult Dickson's history [3], particularly 
Volume I, Chapter XVII, where elements of the problem are traced back to Gauss and 
Lagrange. Earlier in the MAGAZINE, Vella and Vella [9] looked at possible periods in 

1 2 7  
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the generalized Fibonacci sequence modulo a prime. Their approach emphasized re
cursive formulas and led to similar results to those here, but are somewhat less precise 
when applied to the standard Fibonacci numbers. 

This investigation stems from a homework assignment from my daughter's fourth
grade mathematics class .  The students were taught the Fibonacci recursion relation and 
how to reduce mod 100. The assignment was to find two starting numbers that gave the 
longest sequence before it repeated mod 100. Being the child of a mathematician, my 
daughter tried to solve the problem. It turns out the teacher imagined that the students 
would try some numbers and make some guesses about what would work best. This 
article shows what to do when the reduction is modulo a prime. If you would like to 
complete the fourth-grade assignment, you may apply the prime case and a little extra 
work to find the longest possible period for reduction modulo a composite. 

Some examples Let p = 19 .  Since order matters and repeats are allowed, there are 
1 92 = 361 possible choices for the starting pair a0 and a 1 . The standard sequence, 
which starts with a0 = 1 and a1 = 1 ,  becomes 

1 ,  1 ,  2, 3 ,  5 ,  8, 1 3 ,  2, 1 5 ,  17 ,  1 3 ,  1 1 ,  5 ,  16 ,  2, 1 8 ,  1 ,  0, 1 ,  1 ,  . . .  (mod 1 9) ,  

which has period 1 8 .  Using Maple to try all possible starting pairs shows that three 
hundred forty-two of them have period 1 8 ,  eighteen of them have period 9, and one 
has period 1 .  In this case the maximum period is 1 8 .  

For p = 23 , there are 232 = 529 possible starting pairs . Direct computation shows 
that, other than the trivial sequence with a0 = a1 = 0, all the sequences have period 
equal to 48, making 48 the maximal period. 

For p = 29, there are 292 = 84 1 possible starting pairs . The standard sequence has 
period 14, as do eight hundred eleven other sequences. Twenty-eight sequences have 
period 7, and the trivial sequence has period 1 .  

Comment Since the sequences are periodic, it is a bit unnatural to say that, in the first 
example, the sequence starting with a0 = 1 and a1 = 1 is different from the sequence 
starting with a0 = 5 and a1 = 8 , since they eventually come around to match up with 
each other. However, for these examples this is a convenient way to count. 

At first glance, it seems that the periods are all over the map: Sometimes the period 
is p - 1 ,  sometimes it is much less . Sometimes it is even bigger than p. However, by 
analyzing the sequences, in particular by examining the matrix that generates them all, 
certain features emerge that allow us to divide the problem into cases where the pattern 
becomes clear. 

The problem 

The sequences in question are 

( 1 )  

with aN = a o  (mod p)  and aN+ ! = a 1  (mod p)  

and N i s  some number we  don' t  know in advance. We will not restrict to the standard 
starting values of a0 = 0 and a1 = 1 ,  which makes the question more interesting. We 
will assume that p "I 2, since we often have to divide by 2. Most of the time, we will 
also assume that p "I 5 to avoid a similar complication, as you will see. A few basic 
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facts from number theory are used, and can be found in the classic texts by Hardy and 
Wright [4] or Niven and Zuckerman [7] . 

A convenient way of generating the sequence is to call on linear algebra. The stan
dard trick is to write the recursion relation as : 

(2) 

For convenience, let M = ( � i ) . Note that this is the companion matrix of the 

polynomial x2 - x - 1 ,  which is important for Fibonacci numbers. We can now write: 

(3) 

In this formulation, the period of the Fibonacci sequence starting with a0 and a1 is the 
smallest positive integer k such that 

(4) 

Our problem, then, is to find a0 and a1 so that k is as large as possible. From (4), we 
see that k will always be less than any n such that 

Mn = I  (mod p) , (5) 

where I is the 2 x 2 identity matrix. Moroever, the period of any Fibonacci sequence 
will be a divisor of n ,  meaning our k must divide n .  As a result, the smallest such n, 
denoted n (p) ,  is an upper bound on the longest period. 

Standard trick, part II : diagonalize the matrix: 

(6) 

The eigenvalues of M are 1-L = (1 + JS) j2 and fi = (1 - J5) j2. Thus D = 
diag(fl,, fi) and 

A = (� � ) · 

Then, Mn = I exactly when f-Ln 
= l (mod p) and fin 

= 1 (mod p). It's enough to 
figure out the minimum n for one of the two eigenvalues. I pick f-L. 

The sol uti on  

There are three cases to  examine. We leave the case p = 5 to the end, a s  i t  is very dif
ferent from the others. In each case, there are two tasks : compute n (p) and determine 
whether any sequences of this maximal period occur. 

Case 1 :  Suppose 5 is quadratic residue of p In this case, 5 has a square root in lF p ·  
By quadratic reciprocity, 5 is a quadratic residue of p when p = 5 N  ± 1 .  Since the 
interesting values of p are odd, we actually have p = ION ± 1 .  Moreover, in this case, 
both f-L and fi are also elements of lF P . 

A primitive element of JF; is an element that generates JF; as a multiplicative group. 

If x is a primitive element of JF; , then group theory tells us that x p- I = 1 and p - 1 
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i s  the least such exponent. Here p - 1 is the the number of elements of lF } If x is not 
primitive, then the least such exponent is the order of x in the multiplicative group JF; , 
which is necessarily a divisor of p - 1 .  

PROPOSITION 1 .  Jf 5  is a quadratic residue of p, then the smallest n = n (p) satis
fying (5) is the order of fJ- in JF;. Moreover, there is at least one sequence with period 
n (p) . 

Proof We have already seen that n (p) equals the order of fJ- .  For the second state
ment, we note that any nonmaximal period k corresponds to a nontrivial solution to 
(4), which means that Mk - I  has a nontrivial nullspace as a linear transformation on 
lF /, the two-dimensional vector space over lF p · The only way this nullspace can be 
nontrivial is for k to be a divisor of n (p) .  We can now see that there won't be any 
sequences of maximal possible length if and only if the nullspaces of Mk - I ,  running 
over all proper divisors k of n (p) ,  exhaust lF / . Now, since the nullspace is a vector 
space over lF P • it will have either 1 or p elements . (We are already assuming that it's 
not the whole space.) However, n (p) is either p - 1 or a divisor of p - 1 , and there 
are fewer than p proper divisors of p - 1 .  So by multiplying and counting, we see that 
the union of these nullspaces has fewer than p2 elements, and cannot be all of lF P 2 • 
Hence, there must be at least one Fibonacci sequence with maximal period, n (p) . • 

Case 2: Suppose 5 is not a quadratic residue of p In this case, fJ- and 7i are not el

ements of lF P . It is necessary, then, to work over the field lF P ( .J5) � lF Pz .  The problem 

becomes finding the order of fJ- in lF P ( .J5) * .  
Write out 

f.J,p+l = 1 + .j5 = _1_ ( 1 + J5)P+1 
( ) p+ 1  

2 2P+1 

and reduce mod p. Reducing the denominator as 2P+1 = 2P · 2 = 2 · 2 = 4, since 
xP = x (mod p) for all x, gives 1 f2P+1 = 1 /4. The second factor reduces as : 

( 1 + J5)p+1 = ( ( J5)P+l + (p + 1 ) ( J5)P + p(p 
2
+ 1 )  ( J5)p- 1  + . . .  

+ p(p 
2
+ 1 )  (J5)2 + (p + l )J5 + 1) 

= (<J5V+1 + (J5)P + O + · · · + O + J5 + 1) (mod p) .  

Now, compute (.J5)P-1 = SCP-012 : In general, if a i s  any quadratic nonresidue of p ,  
then 

(p - 1 ) !  = aCp- 1)/2 (mod p) ,  (7) 

which can be seen by multiplying together the (necessarily unequal) pairs of elements 
x and x ' such that x · x' = a  (mod p). On the other hand, by doing a similar thing for 
a = - 1  (and handling separately the cases when - 1  is and is not a quadratic residue) 
we get Wilson's Theorem, 

(p - 1 ) !  = - 1  (mod p) . 

By combining (7) and (8), we see 

(J5)P-1 = 5(p- 1 )/2 =: - 1  (mod p) . 

(8) 
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Comment This formula was already known to Euler, but we will want to recall the 
method when considering generalized sequences in the last section. Now, substituting 

this into the expansion of ( 1  + JS)P+1 , we obtain 

/Lp+1 = _1_ ( <.J5v+1 + <v's)P + v's + 1) 2P+1 

= ( 1 /4) ( (5 . 5 <p- 1 );2 + 1 )  + v's(5<p-o;2 + 1 )) 
= ( 1 /4) ( <5 <- o + 1 )  + v's<- 1 + o) = ( 1 /4) (-4) = - 1  

Then, 11-2<P+1l = 1 in IFp (J5) . Moreover, since /LP+1 = - 1  in IFp (J5) , we see that 
2(p + 1 )  is the least such exponent. 

PROPOSITION 2 .  lf 5  is not a quadratic residue of p, then the smallest n = n (p) 
satisfying (5) is n (p) = 2(p + 1). There is at least one sequence with period n (p ) .  

Proof We have already computed the value of n (p) . The proof of the second state
ment is essentially the same sort of counting argument as in the first case, which shows 
that there aren't enough "short periods" to exhaust the IF P 

2 of possible sequences. 
Therefore, the maximum is attained in this case, too. • 

Case 3� p = 5 Since 5 = 0 (mod 5), we have 11- = ( 1  + 0) /2 = 1 /2 = 3 (mod 5) 
and 71 = (1 - 0) /2 = 1 /2 = 3 = 11-� Thus, the matrix A in our earlier analysis is 

A = ( � � ) = ( � � ) . 

which is singular, i .e. ,  there is no A - 1 . The point is that we cannot diagonalize the 
Fibonacci matrix M in this case. However, Z/ (5) is small, and it is not too hard to run 
through all the possibilities . Starting with a0 = 1 and a1 = 1 leads to the sequence 

1 ,  1 ,  2, 3 , 0, 3 , 3 , 1 ,  4, 0, 4, 4, 3 , 2, 0, 2, 2, 4, 1 ,  0, repeat 

which has period 20. This is the period for most choices of initial values. However, for 
a0 = 1 and a 1 = 3, the sequence is just 

1 ,  3, 4, 2, repeat 

which has a period of just 4. The only other sequence is the trivial sequence 0, 0, 0, . . . .  

Summary for Fibonacci sequences If 5 is a quadratic residue of p,  then the maxi
mal period of any Fibonacci sequence in IF P is the order of 11- in IF; . This is the maxi

mal value of p - 1 when 11- is a primitive element. If 11- is not primitive, then the order 
is some divisor of p - 1 ,  which needs to be determined by a direct calculation. By 
quadratic reciprocity, the primes p are of the form p = lON ± 1 .  

If 5 is a quadratic nonresidue of p,  then the maximal period of a Fibonacci sequence 
in IF P is 2(p + 1 ) .  By quadratic reciprocity, these primes are of the form p = 1 ON + 7 
and p = lON + 3 .  

For p = 5,  the possible nontrivial periods are 4 and 20. 

Genera l i zed F ibonacci  n u m bers 

The Fibonacci recurrence relation can be generalized to allow for weights : bn = 
cxbn_1 + f3bn_2 , where ex and f3 are integers. We can then ask for the maximal periods 
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of sequences of  generalized Fibonacci numbers, modulo a prime p :  

bN = bo (mod p )  and bN+l = b 1 (mod p) . 
(9) 

The weights a and f3 need not be positive integers. However, in order to avoid acciden
tal multiplication by zero, we should make sure the a and f3 are both relatively prime 
to p .  

The arguments used for the standard Fibonacci now carry over, but become harder. 

The matrix becomes M = ( � � ) . The eigenvalues become 

Let D = a2 + 4{3 be the discriminant of the polynomial x2 - ax - {3, which plays the 
role of x2 - x - 1 from the standard Fibonacci numbers. Assume, for the time being, 
that D i= 0. If D is a quadratic residue of p, then the argument in Case 1 goes through 
mutatis mutando. 

If D is not a quadratic residue of p, then we need to be more careful. We again 
need to work in an extension field of F P , this time the field is F P ( v'D) . The essential 
problem is to determine the orders of f.L and 7i in F P ( v'D) * .  As before, the order of 
this multiplicative group is p2 - 1 ,  which factors as (p - 1 ) (p + 1 ) .  Computing J.Lp+l 
is a little more difficult now, since a and f3 are not explicit, meaning we don't have 
a tidy expression for J.L. However, we can use the isomorphism Fp (v'J5) � FPz and a 
standard fact about the map x � xP in a field of characteristic p .  This map, denoted 
Fr, is called the Frobenius map or the Frobenius endomorphism, and it is very useful in 
number theory. In our setting, the Frobenius map has the following useful properties, 
as can be found in the book by Mullen and Mummert [6] : 

Fr(xy) = Fr(x)Fr(y) 

Fr(x + y) = Fr(x) + Fr(y) 

Fr(x) = x if and only if x E F P 
F� = Id. 

The first two properties are just another way of saying that Fr is an endomorphism, 
that is, a homomorphism from F P ( v'D) to itself. The last property is special to the 
case of a quadratic extension, and can be deduced using reasoning similar to the 
computation presented in Case 2 above. The last two properties combine to imply 
Fr(v'D) = -v'D. 

We can now set about computing f.LP+1 . Write out: 

f.Lp+l = 
a + ,Ji5 = _1_ (a + ..fi5)P+l 
( ) p+l 

2 2P+1 

and reduce mod p .  As before, the denominator reduces as 2P+1 = 2P2 � 2 · 2 = 4. 
The second factor reduces as : 

(a + ..fjjy+l = (a + JD)P (a + ..fi5) = Fr(a + JD) (a + JD) 
= (a - JD) (a + JD) = a2 - D 



VOL.  82, NO. 2, APR IL  2 009 1 3 3 

But D = a2 + 4{3 , so the second factor reduces to a2 - (a2 + 4{3) = -4{3 and 

/Lp+l :;;:: -/3. 

For the standard Fibonacci numbers, f3 = 1 .  So we knew that f32 = 1 and could con
clude that JL2CP+Il :;;:: 1 .  Now, however, we need to know the order d of -f3 in IF; . This 
is not an easy problem in general. All we really know is that d must divide (p - 1 ) ,  
the order of  IF; . Thus, the best we  can conclude i s  only that the maximum period of 
the generalized Fibonacci sequence is d(p + 1 ) ,  and we are left with separate com
putations for every case. Again, a counting argument verifies that the maximal period 
n (p) does occur. For a = 3, f3 = 7, and p = 1 3 ,  the maximum possible period is 
n (p) = p2 - 1 = 168 .  Using the starting values b0 = 0 and b1 = 1 ,  a computation 
using Maple shows that this maximum period does indeed occur. 

If the discriminant D = a2 + 4{3 is zero, the situation is rather different. Observe 
that f3 = - (a/2)2 and, for notational convenience, let A = aj2. The recurrence rela
tion now becomes: 

and the matrix becomes 

M = ( -�2 2� ) · 

Unfortunately, M is not diagonalizable. It has Jordan form 

( A 1 ) k ( Ak kA_k-J ) J = 0 A , so that J = 0 Ak . 

If k is a period for this generalized Fibonacci sequence, then we want to find k such 
that Jk = I, which means 

( Ak k)._k- 1 ) ( 1 0 ) 0 Ak = 0 1 (mod p) . 

Since Z/ pZ is a field, the equality of the (2, 2) entries tells us that A k = 1 (mod p ) . 
This implies that k is a multiple of the order of A in (Z/ pZ)* ,  which is a divisor of 
(p - 1 ) .  Comparison of the ( 1 ,  2) entries tells us that k)._k-1 = 0. Again using that 
Zj pZ is a field, we deduce that one of the factors must be zero. But a power of A 
is zero only if A itself is zero, so we are left with k = 0 (mod p ) , implying that k 
is a multiple of p. So the longest possible period is kp, where k is the order of A in 
(Z/ pZ) * .  When A is primitive, the longest possible period is p(p - 1 ) .  

Acknowledgment. I am grateful to Peter Trapa who suggested the counting argument that i s  used in the proofs 

of the second statements in the propositions. 
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We enjoyed reading how Horton [1] "fooled Newton's method" with an example where 
the sequence 

f(xn ) 
Xn+l = Xn -

f' (xn ) 

converges but its limit does not satisfy f (x) = 0. Indeed, if 

f(x) � 1: - 2x sin '; for x -::j:. 0, 
for x = 0, 

then the Newton sequence is 

1 rr:xn - 2x; sin .!!.... 
Xn+l = Xn - -2 

:n: • :n: , 
rr: cos - - Xn sm -

Xn 
Xn Xn 

( 1 )  

and, starting from x1 = 1 /2, we  have x2 = 1 /4, X3 = 1/8 ,  . . .  , Xn = 1 /2n --+ 0,  al
though f (0) = rr: "I= 0. 

Can f be differentiable ? Note that the function in ( 1 )  is not differentiable at x = 0. 
Since we thought that a differentiable function would fool the method even better, we 
wanted to know if such a function exists. Simply modifying Horton's function, we 
found an example that readers might find even more surprising: 

I 2 

• 
:n: f(x) = : - x  sm ;z for x -::j:. 0, 

for x = 0. 
(2) 
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This function is differentiable and its Newton sequence is 

Xn+l = Xn - - 2 • . 
2 rr cos II... - x sm II... X� n X� 

3 . 1f 
1 7r Xn - Xn Slll 2 Xn 

Again, if x1 = 1 /2, then Xn = 1 /2n � 0, but f(O) = rr ::/= 0. 

1 3 5 

Can f be continuously differentiable? Because f in (2) is not continuously dif
ferentiable at x = 0, our next question was: Can we fool Newton's method with a 
continuously differentiable function? 

The answer is negative. More generally, f' cannot be bounded near the limit point 
x0 • (If f' were continuous, then it would be bounded there.) For, assume that Xn � xo 
and f is continuous at x0 • Since 

and the left-hand side has limit zero while the numerator of the right-hand side has 
limit f(x0) ,  it follows that 

f(xo) = 0 or l f' (xn) l � oo. 

(Note that the existence of f' (x0) is not needed. It is enough that f' (x) exists when 
x ::/= xo is near xo .) 

Acknowledgment. We thank one referee for suggestions that simplified the original manuscript considerably. 

We also thank the other referee for valuable suggestions. 
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Among Ramanujan's many beautiful formulas is the 6-8-10 equation 

64[(a + b + c)6 + (b + c + d)6 - (c + d + a)6 

- (d + a + b)6 + (a - d)6 - (b - c)6] 

X [ (a + b + c) 10 + (b + C + d) 10 - (c + d + a) 10 

- � + a + �I0 + � - �10 - � - �� 

= 45 [(a + b + c)8 + (b + c + d)8 - (c + d + a)8 

- (d + a + b)8 + (a - d)8 - (b - c) 8f 
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when ad  = be. Berndt and Bhargava [2] cite this as "one of the most fascinating iden
tities we have ever seen." Letting 

fm = ( 1  + X + y)m + (-X - Y - xy)m - ( -y - xy - 1)m 

- (xy + 1 + x)m + (- 1 + xy)m - (-x + y)m 

and b = ax , c = ay, d = axy , Ramanujan's equation may be compactly stated as 

( 1 )  

(2) 

Proofs of equation (2) may be found in references [3] , [5] , and [6] . How Ramanujan 
found this identity (as with many of his results) remains shrouded in mystery. He also 
discovered h = 0 and f4 = 0. Only many decades later was a similar equation found 
by Hirschhorn [5] , specifically 

2 1fl = 25f3h . 

The goal of this note is to show how these identities and others may be found. 
Berndt [1] showed that the polynomials fm associated with (2) factor nicely: 

f6 = 3x (x - 1 ) (2x + l ) (x + 2) (x + 1 )y (y - 1) (2y + 1 ) (y + 2) (y + 1 ) , 

fs = 8x (x - 1 ) (2x + 1 ) (x + 2) ( 1  + x) (x2 + x + 1 )  
. y (y - 1) (2y + 1 ) (y + 2) (y + 1 ) (y2 + y + 1 ) , 

!10 = 15x (x - 1 ) (2x + l ) (x + 2) ( 1  + x) (x2 + x + 1 )2 
. y (y - 1) (2y + 1 ) (y + 2) (y + 1 ) (/ + y + 1 )2 • 

(3) 

These factorizations are easily replicated by Maple, but one can prove these formally 
by showing that the polynomials on each side have the same zeros (with multiplicity) 
and scaling factor. Ramanujan's identity (2) now becomes straightforward to demon
strate. Similarly, the polynomials fm in Hirschhorn's equation (3) may be factored to 
obtain 

13 = -3 (x - 1 ) (2x + 1 ) (x + 2)y (y + 1 ) , 

fs = -5(x - 1 ) (2x + 1 ) (x + 2) (x2 + x + 1 )y (y + 1 ) (/ + y + 1 ) , 

h = -7(x - 1 ) (2x + 1 ) (x + 2) (x2 + x + 1 )2y (y + 1 ) (l + y + 1 )2 , 

allowing an easy proof of equation (3). 
Are there other relationships among the polynomials fm ? Scanning the factors, one 

finds 

5fds = 8fs !6 (4) 

and 

(5) 

In an attempt to find other identities, one may factor fm for other values of m.  Un
fortunately, the factorizations don' t  yield any obvious treasures. Maple produces, for 
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example, 

19 = -3 (x - 1 ) (2x + l ) (x + 2)y (y + 1 ) (3 + 21xy + 9x + 9y + 21x2 + 19y2 

+ 63x2y + 51xl + 27x3 + 23l + 105x2y2 + 81x3y + 1 1 5x3y2 + 69xl 

and 

+ 105x2l + 95x3l + 21x4 + 19/ + 63x4y + 51xy4 + l 05x4l + 105x2/ 

+ 21x5y + 27xl + 9x5 + 9y5 + 3x6 + 3y6 + 105x4l + 51x5y2 + 1 15x3y4 

+ 9x6y + 63x2y5 + 9xl + 1 05x4l + 69x5l + 8lx3l + 1 9x6l + 21x2l 

+ 51x5l + 63x4l + 21x5y5 + 23x6l + 27x3l + l 9x6l + 21x4l 

+ 9x6y5 + 9x5l + 3x6l) 

fu = - l l (x - 1 ) (2x + 1 ) (x + 2) (x2 + x + 1 )y (y + 1 ) (y2 + y + 1 ) 

( 1  + 3x + 3y + 9xy + 9x2 + 7l + 21x2y + 2 1xy2 + 39x3y + 33x2l 

+ 27xy3 + 1 3x3 + 9l + 9x4 + 1y4 + 3x5 + 3y5 + x6 + l + 21x4y 

+ 3 1x3y2 + 21x2l + 21x/ + 33x4l - 3x3l + 33x2l + 9x5y + 9xy5 

+ 21x5y2 + 2 1x4y3 + 3 1x3y4 + 3x6y + 27x2l + 3xl + 1x6y2 + 27x5l 

+ 33x4l + 39x 3l + 9x2l + 9x6l + 21x5/ + 27x4l + 1 3x3l 

+ 1x6l + 9xsys + 3x6y5 + 9x4y6 + 3xsl + x6l) .  

B y  considering smaller values of m,  one finds that f- 1 and f_2 also have tidy fac
torizations, namely 

and 

!-I  = 
(x - 1 ) (2x + 1 ) (x + 2) (x2 + x + 1 ) y (y + 1 ) (y2 + y + 1 )  

( 1  + x + y) (x + y + xy) (y + xy + 1 ) (xy + 1 + x) (- 1 + xy) (x - y) 

f 2 = x (x - 1 ) (2x + 1 ) (x + 2) (x + 1 ) (x2 + x + 1 )2y(y - 1 ) (2y + 1 ) (y + 2) (y + 1 ) (y2 + y + 1 )2 - (1 + x + y)2(x + y + xy)2 (y + xy + 1 )2 (xy + 1 + x)2 (xy - 1 ) 2 (x - y)2 

Not surprisingly, there are relationships between f _ 1 ,  f _2, and the other nicely factored 
terms: 

(6) 

Just as with f9 and f1 1 ,  fm does not seem to factor extensively for integers m � -3. 
One may think this is the end of the road; however, note that the indices for each 

term in (2) sum to 1 6, to 1 0  in (3) , 1 1  in (4) , and 1 3  in (5) . Searching for a similar 
equation where each term involves two fms whose indices sum to 14, one could look 
for constants a, b, c, and d for which 

afdu + bfs h + cf6!s + dfi = 0. 

Note that any other possible terms are vacuous since f1 , h.  and f4 are each identically 
zero. By evaluating this equation at four points (x ,  y) and using linear algebra, one 
arrives at the conjecture 

245fdu - 539fs!9 + 330/f = 0. (7) 
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How can one prove this equation is valid? Entering the expression on the left into 
Maple and simplifying produces zero. Alternatively, one may also use Hirschhorn's 
generating function approach [5] . Defining 

one finds 

a1 = 1 + x + y , b1 = -x - y - xy, c1 = - 1 + xy ,  
a2 = -y - xy - 1 ,  b2 = xy + 1 + x ,  c2 = -x + y ,  

q = (x2 + x + l ) (i + y + 1 ) ,  PI = a 1b 1c1 , P2  = a2b2c2 , 

i3 = 2(pl - P2) ,  is = 5q (pl - P2) ,  i6 = 3 (pi - p�) ,  h = 7q2 (PI - P2) ,  
is = 8q (pi - p�) ,  fg = 3 (pl - P2HPi + P1 P2 + P� + 3q3 ) ,  

i10 = 15q2 (Pi - p�) ,  iu = l lq (pl - P2HPi + P1 P2 + P� + q3) .  

While one now clearly obtains not only (2) and (3) but also (7), this approach has its 
limitations. Though the polynomials im may be expressed in a more compact form 
using p1 ,  p2 , and q , these representations of im will also become unwieldy for modest 
values of m .  

Yet another approach to establish (7) involves difference equations. Since im i s  a 
linear combination of six mth powers, im satisfies a sixth order difference equation 
whose characteristic equation has the six bases as its roots . With the factorizations 
noted earlier, the characteristic equation becomes 

0 = (r - 1 - x - y) (r + x + y + xy) (r + y + xy + 1 )  

(r - xy - 1 - x) (r + 1 - xy) (r + x - y) 
= r6 - 2(x2 + x + 1 ) (i + y + 1 )r4 

+ x (x + 1 ) (y - 1 ) (2y + 1 ) (y - 2)r3 + (x2 + x + 1 )2 (i + y + 1 )2r2 

- x (x + 1 ) (x2 + x + 1 ) (y - 1 ) (2y + 1 ) (y - 2) (i + y + 1 )r 

- (xy + 1 + y) ( 1  + x + y) (xy + 1 + x) (xy + x + y) (x - y) (xy - 1 )  

= r6 _ � is r4 _ i6 r3 + !!.__ il r2 + � is/6 r + ! A 
5 13 i3 25 il 5 il 5 i-1 

thus yielding 

6 is i6 9 fl 3 isi6 1 is 0 = im - 5 
/3 

im-2 - /3 im-3 + 25 il 
im-4 + 5 i32 

im-S + 5 i-l 
im-6 (8) 

for all m. Specific choices of m in (8) give some known formulas : m = 4 produces (6), 
m = 7 gives Hirschhorn's equation (3) ,  m = 8 gives (4), and m = 10 (with help from 

(3) and (4)) yields Ramanujan's equation (2) . Indeed, (8) may be used recursively to 
generate many formulas. To obtain (7), take the m = 1 1  equation multiplied by /3 ,  
the m = 9 equation multiplied b y  is , then subtract. This eliminates the i-1 terms and, 
combined with previously discovered identities, yields the desired result. 
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The linear algebra approach used to find equation (7) may be used to find many 
identities .  Other equations found include 

308i1� = 525isi12 - 300i6i14 •  

1763580i121 = 27358 10idn - 1 172490id1s + 144837 isi11 + 7 1995id19 • 
6395400i1� = 10445820i12i16 - 5448212iw!Is + 14601 5 1 isho + 49980i6h2 · 

These equations were mentioned in reference [4] . Upon further reflection, one realizes 
that limiting each term to the product of two im s is unnecessary; one may use partitions 
of integers to find even more possibilities .  This produces more identities than we know 
what to do with. A small sampling includes 

-35i34 - 945il - 972ish + 12601319 = 0 
-88if is - 1485i6is - 1584isi9 + 2160idn = 0 

3375idl - 4500i32 h + 2916if + 125ii = 0 
7776is2 h + 472513 i6is - 1008013isi9 + 280i34 is = 0 

-35if is - 630ish - 108idw + 540id14 = 0  

-35if is - 630is h - 1296idw + 15 1 2isi12 = 0 
-2187 is2 is - 1 800id6h - 100ii i6 + 2700i32 i12 = 0 

A word should be said about the Maple code used to produce these examples.  
Maple's built-in partition capabilities make the code relatively short. However, since 
the partition function grows very quickly, even Maple's power will get bogged down 
after some time. For example, there are 627 partitions of the number 20. To reduce 
the amount of computing, recall that im = 0 for m = 1 , 2, 4. This reduces the number 
of relevant partitions to 27, a much more manageable number. Lastly, each identity is 
factored to weed out those which are a multiplicative combination of others. 

m :  
As a final exploration, one may discover combinations involving im with negative 

12isi-d-2 - 5i6i�1 + 5id�2 = 0 

1 8isi-d-2 - 5i6i�1 + 5/f i-4 + 20i6i-d-3 = 0 

-42isi-d-2 + 5id�d-2 - 15id-d-4hi-2i-3 = 0 

-36isf� 1 - 5if i� 1  + 5if i�2 = 0 

- 168isf-2 - 36id�d-2 + 280i6i� 1  + 2 1isi-s - 21isf-d�2 + 60hi-4 = 0 

45id�1 + 700ifi� 1  + 84idsi-s - 84idsi-d�2 - 225id�2 + 3780isi�1 = 0 
1440i7i�1 + 5600i32 i� 1  + 2688ids!-s 

- 168idsi-d�2 + 3600hi�2 + 4725isf-d-4 = 0 

360id�1 + l400if i�1  + 672ids!-s 
+ 168idsi-d�2 + 3600id�2 + 1 575isf-d-3 = 0 

l20id�d-z - 840id�1 + l05isf-d�2 + 56ids!-zf-3 = 0 
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- 135 fd�1 - 350J(f !� 1 - 42!Jfsf-s 

+ 42fdsf-d�2 - 225fd�2 + 450fd-d-3 = 0 
27 fsf�d-z - 16fd6f-zf-3 + 4fd6f�d-z + 12!316!-d-4 = 0 

1 12fdsf-d-3 - 105fsf�d-z + 1 680!6!-z + 960fd-3 + 3 15fsf-4 = 0 
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C l ass i fy i ng  a -A l m ost-Sq uares 

B O B B E  C O O P E R  
U n iversity of Georgia 

Athens, GA 3 0605 
bcooper@ math . uga.edu 

Greg Martin's paper "Farmer Ted Goes Natural" [1]* addresses the question: "Given a 
positive integer N, find the dimensions of the rectangle with integer side lengths and 
area at most N whose area-to-perimeter ratio is largest among all such rectangles ." 
(These numbers will be the best integer solutions to the common calculus problem of 
finding the least amount of fencing necessary for a given area.) He defines an almost
square as any number that can be factored into two terms in such a way that the rect
angle with sides equal to the factors has area-to-perimeter ratio as large as any rect
angle with smaller area. The main theorem of his paper gives a formula for listing the 
almost-squares in order, without factoring any integers. 

In Martin's  conclusion, he mentions the variation on the original calculus problem 
where some of the fencing costs more. This suggests the general problem: "Given a 
positive integer N, find the dimensions of the rectangle with integer side lengths and 
area at most N whose area-to-cost ratio is largest among all such rectangles, where 
two parallel sides are weighted by an integer cost a ." Let's help the farmer solve this 
problem for a = 5 and N = 172. 

Our farmer needs to fence 172 square feet of pasture land. The south and north sides 
can be fenced in plain barbed wire that costs $ 1 per foot, but the east and west sides 
must be fenced with windproof barbed wire that costs $5 per foot. What dimensions 
would minimize the cost of the fence? 

Easy calculus shows that each south-north side should be ,J172 x 5 � 29 .3 ft, and 
each east-west side should be ,J172/5 � 5 .9 ft, for a total cost of about $ 1 17.30. 

*Editor's Note: Another follow-up to Martin's paper sparked a lively exchange of letters in our June 2006 

issue about the tension between questions that address real-world problems and questions that spark mathematical 

interest. We admit that this material falls in the latter category and hope that readers will enjoy it in that spirit. 
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What if the farmer cannot buy fractional feet of fencing, let alone irrational lengths? 
She could use the dimensions 43 x 4, for a cost of $126, which is better than, say, 
86 x 2 for $ 190. However, she could do better if she fenced off just a little less land. If 
she built her fence with dimensions 34 x 5 ,  she would get 170 ft2 for just $ 1 1 8 . This 
would be about 1 .44 ft2 per dollar, which is cheaper than the 1 .37 ft2 per dollar she 
would pay to fence the whole 172 ft2 • So 34 x 5 is more cost-effective-but are there 
other integer dimensions that give even more area per dollar? 

Exp l o r i n g  the prob lem 

Factoring n = xy naturally leads to  a rectangle with sides x and y .  For fixed a � 1 ,  
the cost-actually half the cost, for convenience-of fencing that rectangle will be 
considered the cost of the factorization, namely x + ay. We want to factor integers so 
they have small costs. 

We define a best1actoredform with respect to a of a positive integer n ,  for a �  1 ,  
to be the ordered pair (x , y )  such that xy = n and for all other factorizations w z  = n ,  
x + ay :::;: w + az. We denote this by n = x Xa y .  (Where possible, the words "with 
respect to a" will be suppressed for brevity.) Note that in best-factored form, the order 
of the factors matters and the first factor will always be greater than or equal to the 
second factor when a � 2. 

If x X a y is a best-factored form of n ,  then the least-cost of n is defined as sa (n) = 
x + ay. We seek integers that represent rectangles with large areas for small costs. So 
we define the area-to-cost ratio of a positive integer n to be Fa (n) = n /sa (n ) .  

Following Martin, we define a positive integer n to be an a-almost-square if and 
only if Fa (k) :::;: Fa (n) for all k < n .  The a-almost-squares (or a-squares for short) are 
the integers that beat (or tie) every lower integer for area-to-cost ratio. 

Given a constant a, we can calculate the a-squares in order by brute force, calcu
lating every possible factorization of each integer. For instance, 1 3  is not a 5-square, 
because F5 ( 13) = 1 3/ 18 ,  and F5 ( 12) = 3/4 is greater. By brute force, the first fifty 
5-squares, are 

{ 1 , 2, 3 , 4, 5 , 6, 7 , 8 , 9 ,  10 ,  1 1 ,  12 ,  14 ,  16 ,  1 8 , 20, 22, 24, 26, 28, 

30, 32, 33 , 36, 39 , 42, 45 , 48 , 5 1 , 54, 56, 57, 60, 63 , 64, 66, 68, 

72, 76, 80, 84, 88 , 92, 95 , 96, 100, 104 , 105 , 108, 1 10 . . .  } 

Every integer of the form (5m) (m) for some m is on the list, which is good, since those 
numbers are precisely the integer calculus solutions to the problem of minimizing cost 
with a given area. Their close cousins, the numbers (5m) (m - 1 ) ,  also appear in the list 
for every m. Any other pattern is difficult to see in a list like this-when the numbers 
are small compared to a ,  a overpowers the factors .  As we shall see, there are patterns 
that hold for every a ,  but they are hard to pick out when the numbers are small. 

What patterns do you see in the 5-squares between 800 to 900, shown in TABLE 1 ? 
Notice that the least-costs of the 5-squares (the right-hand columns) form a nonde
creasing sequence. In this nondecreasing sequence of least-costs, consecutive entries 
are either equal or differ by 1 .  (This holds true for all lists of a-squares.) After Martin, 
let 's call a set of 5-squares with equal least-cost a flock of 5-squares .  Generalizing, for 
any fixed a, a flock will be a set of a-squares with the same least-cost. 

If you look closely, you can see that the largest 5-square in each flock has one of two 
forms: (5m - f3) (m) or (5m - f3) (m - 1 ) ,  where f3 is a nonnegative integer less than 
5 .  We will use the name flock leaders for numbers that can be factored this way. For 
example, 806 = (5 x 1 3  - 3) ( 1 3) ,  so it is a flock leader; the name seems apt, because 
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TABLE  1:  5-squares between 800 and 900, the i r  best-factored forms, and least-costs 

804 = 67 x s  1 2  ss (804) = 127 852 = 7 1  x 5  1 2  ss (852) = 1 3 1  

806 = 62 x 5  1 3  ss (806) = 127 854 = 6 1  x 5  14 ss (854) = 1 3 1  

8 1 6  = 6 8  x s  12 ss (8 1 6) = 128 858 = 66 x s  1 3  ss (858) = 1 3 1  

8 1 9  = 6 3  x 5  1 3  ss (8 1 9) = 128 868 = 62 x 5  14 ss (868) = 1 32 

826 = 59 x s  14 ss (826) = 129 87 1 = 67 x s  1 3  ss (87 1 )  = 1 32 

828 = 69 x 5  12 ss (828) = 129 882 = 63 x s  14 ss (882) = 133  

832 = 64 x 5  13  ss (832) = 129 884 = 68 x s  1 3 ss (884) = 133  

840 = 60 x 5  14 ss (840) = 1 30 896 = 64 x s  14 ss (896) = 1 34 

845 = 65 x 5  1 3  ss (845) = 1 30 897 = 69 xs 1 3  ss (897) = 1 34 

806 is the largest 5 -square in its flock. The next flock leader is 8 1 9  = (5 x 1 3 - 2) ( 13 ) .  
We take a moment to mention that (5m) (m) and (5m) (m - 1 )  are flock leaders with 
f3 = 0. 

You can see these patterns continue down the table. In Lemma 2, we confirm the 
patterns, by proving that every flock leader is an a-square, and that it is the largest 
number in its flock. 

But these flock leaders are not the only 5-squares. A bit of thought shows that if you 
take a flock leader, add 5 to the first factor, and subtract 1 from the second factor, you 
will produce a smaller integer that has the same cost and belongs to the same flock (as 
long as it is a 5-square). Of course the same thing happens if you take a flock leader 
and subtract 5 from the first factor, and add 1 to the second factor. This process can be 
repeated to produce every integer in a particular flock. 

It may seem at first that as long as one of these integers is greater than the previ
ous flock leader, it will be a 5-square. After all, it represents a rectangle of larger area 
than the previous flock leader, and its least-cost is only one larger. But there are excep
tions to this :  For example let's take 8 1 9  = (5 · 1 3 - 2) x 1 3  as our flock leader. If we 
subtract 5 from the first factor and add 1 to the second, we get 58  x 14 = 8 1 2. This 
number has the right cost and has a greater area than the previous flock leader, 806. 
But its area-to-cost ratio is 8 1 2/ 1 28, which is smaller than that of the previous flock 
leader, 806/ 1 27.  A fenced area with dimensions 58 x 14 is not as cost-effective as the 
fenced area with dimensions 62 x 13 ,  so 8 1 2  is not a 5-square. Is there any way to 
characterize which integers in a particular flock will be 5-squares, without extending 
our brute force list? And what about 3-squares, 9-squares, and 4739-squares? 

The so l ut ion 

Martin's solution to  the original Farmer Ted problem was elegant; ours is just a little 
less so. According to our Theorem, the a-squares can be arranged consecutively in 
orderly flocks, each led by a flock leader, and the other numbers in the flock can be 
obtained by appropriate addition to the first factor and subtraction from the second 
factor (or vice versa.) There's  only one snag: How many times can we continue that 
process and still obtain a-squares? The numbers Pm and qm defined in the Theorem 
answer this question. For convenience, the Theorem is stated in two parts: the first part 
describes flocks whose leaders have the form (am - {3) X a  (m) ,  and the second part 
describes flocks whose leaders have the form (am - {3) X a  (m - 1 ) .  We use LxJ to 
mean the greatest integer less than x .  
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THEOREM PART 1 .  For any integer a � 1, any integer f3 satisfying 0 � f3 < a, 
and for all m � 1, the a-squares between (am - f3 - 1 ) (m) + 1 and (am - f3) (m) 
(inclusive) belong to a single flock. Define l-{3 /(-{3 ) 2 m2 J Pm = 

2a 
+ 

2a + 
2am _ f3 _ 1 

and k = a (pm + 1)2 - f3 (Pm + 1 ) .  

Then the flock consists of (a (m + j) - {3 )  Xa (m - j) for j = 0 ,  1 ,  . . .  , S, where 

S = 
{Pm + 1 ifm � k ( 1 + .J1 - ({3 + 1 )/ (ak)) 

Pm ifm < k ( 1 + ,J1 - ({3 + 1 )/ (ak)) . 

THEOREM PART 2 .  For any m � 2 the a-squares between (am - f3 - 1 )  x 
(m - 1 )  + 1 and (am - f3) (m - 1 )  (inclusive) belong to a single flock. Define l/3 - a  /({3 - a ) 2 (m - 1 )2 J qm = -- + -- + ------

2a 2a 2am - f3 - a - 1  

and k = a (qm + 1 )2 + f3 (qm + 1 ) - a (qm + 1 ) .  Then the flock consists of 

where 

(a (m - j) - {3) Xa (m - 1 + j )  for j = 0, 1, . . .  , S, 

S = 
{ qm + 1 ifm � k (1 + .J1 - ({3 + 1 )/ (ak)) 
qm ifm < k ( 1 + ,J1 - ({3 + 1 )/ (ak)) . 

All about herding: a close examination of flocks We' ll prove the Theorem after a 
sequence of four lemmas, each verifying a different aspect of flock behavior. 

One thing that could make the flocks behave badly, if it ever happened, is this :  
Suppose one of the numbers on the list, say, (a (m - Pm + 1 ) - {3) Xa (m + Pm - 1 ) ,  
could actually be  factored in  a different way, so  a s  to have a smaller cost. Then it would 
belong to a different flock. Lemma 1 assures us that when we have a good factorization 
of an integer, it's actually the best factorization. It implies that the integers listed in the 
Theorem are in best-factored form (which is necessary if they are to be in the same 
flock ! ) .  We also see in the proof that the flock leaders have the greatest area in their 
flock. 

LEMMA 1 .  (WHEN A GOOD FACTORIZATION Is GOOD ENOUGH. )  If an integer 
satisfying (am - f3 - 1 ) (m - 1 )  < n � (am - f3 ) (m - 1 )  for some m has the form 
n = (a (m + d) - f3) (m - d - 1 )  or n = (a (m - d) - f3 ) (m + d - 1 ), then this is a 
bestjactoredform ofn and sa (n) = 2am - a - {3. Similarly, if an integer satisfying 
(am - f3 - 1 ) (m) < n � (a - f3) (m)for some m has the form n = (a (m + d) - {3) x 
(m - d) or n = (a (m - d) - f3) (m + d), then this is a best-factored form of n and 
sa (n) = 2am - {3. 

Proof Either factorization, n = (a (m + d) - f3 ) (m - d - 1)  or n = (a (m - d) -
f3) (m + d - 1 ) ,  leads to sa (n) � 2am - a - {3 .  If there is a better way to factor n ,  
then sa (n) � 2am - a - f3 - 1 .  To show this i s  impossible, we can use calculus to 
show that the largest integer for which sa (n) = 2am - a - f3 - 1 is the previous flock 
leader, (am - f3 - 1 ) (m - 1 ) .  
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We leave to the reader the easy calculus problem of maximizing the area A = x y  of 
the rectangle subject to the cost constraint, x + ay = 2am - a - f3 - 1 .  The y-value 
of the best rectangle is y = m - ({3 + 1 )  j (2a) - 1 /2. Of course, this is probably not an 
integer, but it is surely between y = m - 1 and y = m.  The first option yields an area 
of A = (am - f3 - 1 )  x (m - 1 ) ,  which can be seen to be larger than the area from 
the second option, A = (am - a  - f3 - 1)  x (m) .  Thus, the largest rectangle with a 
cost of 2am - a  - f3 - 1 has dimensions (am - f3 - 1 )  x (m - 1 ) .  This number is 
the previous flock leader. Since n is greater than the previous flock leader, s01 (n) = 
2am - a - {3,  and there is no better way to factor n .  

The other case i s  similar. • 

Conversely, if the least-cost of an integer n is 2am - f3 for some m,  then n can be 
written as n = xy with x � y and x + ay = 2am - {3 .  Letting d = y - m gives us 
n = xy = (a (2m - y) - f3) (y) = (a (m - d) - f3) (m + d) . When y is less than m,  
d will be  negative, yielding the form where d i s  subtracted from the second factor. A 
very similar argument holds when s01 (n) = 2a - a - {3.  Thus every member of a given 
flock can be written in the form given in the Theorem. 

While discussing the table above, we mentioned that numbers of the form (5m) (m) 
and (5m) (m - 1)  always seemed to be 5-squares, and now we can prove it. In the next, 
we confirm that all the flock leaders are a-squares. 

LEMMA 2. (FLOCK LEADERS ARE a-SQUARES)  If n = (am - {3) (m) or n = 
(am - f3)(m - 1 )  for some m, then n is an a-square. 

Proof We know from the proof of Lemma 1 that the flock leaders have the greatest 
area in their flocks, so they have a greater area-to-cost ratio than every other integer 
with equal cost. We can show that each flock leader has a greater area-to-cost ratio 
than the previous flock leader, as follows:  Suppose n = (am - f3) (m) .  If f3 < a - 1 ,  
the previous flock leader i s  (am - f3 - l ) (m) ; we need to confirm that 

(am - f3) (m) (am - f3 - l ) (m) 
----- > ' 

2am - f3 - 2am - f3 - 1 

which is easy. If f3 = a - 1 ,  the previous flock leader is (am) (m - 1 ) ;  after verifying 
the inequality analogous to the one above, we conclude that n has a greater area-to
cost ratio than the previous flock leader. The algebra looks very similar when n = 
(am - f3) (m - 1 ) .  (Note: when f3 = a - 1 ,  the previous flock leader is (am - a) x 
(m - 1 ) . ) All this means that each flock leader has a greater area-to-cost ratio than all 
smaller integers. Therefore, each flock leader is an a-almost-square. • 

Our next lemma says that every a-square between two flock leaders belongs to the 
same flock as the larger leader. This means that the least-costs of consecutive a-squares 
are either the same or differ by 1 ,  and when they differ, the smaller a-square is a flock 
leader. The proof proceeds by contradiction and we leave it to the reader. 

LEMMA 3 .  (THE FLOCKS DON ' T  MINGLE) Every a-square n satisfying (am 
f3 - l ) (m - 1)  < n :::=: (am - f3) (m - 1)  has least cost s01 (n) = 2am - a - {3. Like
wise, every a-square n satisfying (am - f3 - l ) (m) < n :::=: (am - f3) (m) has least 
cost s01 (n) = 2am - {3. 

Finally, we' ll look at the order in which the a-squares are arranged within a flock. 
For notational convenience, fix a, f3, and m and define 

n+d = (a (m + d) - f3) (m - d) and n_d = (a (m - d) - f3) (m + d) . 
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Likewise, define 

r +d = (a (m + d) - f3) (m - d - 1) and r -d = (a (m - d) - f3) (m + d - 1 ) .  

LEMMA 4 .  (HOW TO ARRANGE a-SQUARES)  For a given m and an integer 
d :=::: 0, n_d :S n+d < n-(d- 1) • and r +d < r -d :S r +Cd- 1 ) • with equality only when f3 = 0. 

Instead of a proof, let's just see an example of the algebra involved in this: To show 
that n_d :S n+d •  we look at the inequality 

(a (m - d) - f3) (m + d) :S (a (m + d) - f3) (m - d) .  

Multiplying each side out as binomials, the first terms cancel, leaving us with 
-f3(m + d) :s -f3(m - d) . This is true because m + d :=::: m - d.  The other cases 
are very similar. 

Proving the theorem Fix integers a :=::: 1 ,  0 :S f3 < a, and m :=::: 1 .  We know from 
Lemma 3 that every a-square n satisfying (am - f3 - l ) (m) < n :S (am - f3) (m) 
belongs to the same flock as our flock leader, (am - f3) (m) .  Thus, by the second 
statement of Lemma 1 ,  each has the form n+d = (a (m + d) - f3) (m - d) or n_d = 
(a (m - d) - f3 ) (m + d) .  We need to know which integers of these forms will be a
squares .  

Note that by Lemma 4, the integers n_d , n+d •  n- (d- 1) ,  n+(d- 1) , . . . form a non
decreasing sequence of integers in the same flock. This means that if n_d is an a
square, then so are n+d •  n- (d- 1 ) ,  n+Cd- 1 ) ,  • • . •  (Since all these integers have the same 
least-cost, they form an increasing sequence of a-squares.) Let's find the greatest d 
(corresponding to the smallest n_d) for which n_d is an a-square. 

We know by Lemma 2 that the previous flock leader, (am - f3 - l) (m) ,  is an a
square. This means that n_d must have a greater cost ratio than the previous flock 
leader. Setting the area-to-cost ratio of n_d greater than (or equal to) the area-to-cost 
ratio of the previous flock leader, we have: 

(am - f3 - l ) (m) a ( (m - d) - f3) (m + d) 
----�------ < --�----�------� �m - {3 - 1  �m - {3  

Cross multiplying leads to a quadratic inequality in d .  Solving for d gives us 

-{3 J( f3 ) 2 m2 -{3 J( f3 ) 2 m2 
- - -- + < d < - + -- + . . 
2a � 2am - f3 - 1 - - � 2a 2am - f3 - 1 

This means that the largest integer d for which n_d is an a-square is l-{3 J( f3 ) 2 m2 J d = - + -- + · = Pm · 2a � 2am - f3 - 1 

By Lemma 4, there's only one possible a-square greater than the previous flock 
leader, but less than n_Pm '  which is n+CPm+1) ·  When will n+CPm+1) be an a-square? 
Comparing with the previous flock leader yields 

(am - f3 - l ) (m) (a (m + (Pm + 1 ) )  - f3) (m - (Pm + 1 ) )  ----�----- < . �m - {3 - 1  - �m - {3  
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Solving the quadratic inequality in m gives us: 

m :>: (a (p. + I )' - p (p. + I ) )  ( I + 1 - ----'-{J--::-+_1 ___ ) 
a (a(pm + 1 ) 2 - fJ (Pm + 1 ) )  

. 

When m meets this condition, our list of a-squares will begin with n +(Pm + !) · Other
wise, n _Pm will be the least a-square within the bounds of the lemma. 

The proof of the Theorem, Part 2 follows the same reasoning as the first part; the 
main difference comes from Lemma 4. Since r -d > r +d • we end up looking for the 
largest d such that r -d is an a-square. Similar calculations show this to be qm . The 
only possible a-square lower than r -qm (within the limits of the lemma) is r +(qm + !) · 
Again, similar calculations show that this will be an a-square only when m meets the 
condition listed in the first half of the second part of the Theorem. • 

Con c l us ion  

We can now solve the fencing problem of  the farmer at the beginning. To fence 172  
square feet of  land, she needs to know the least flock leader greater than 172.  By 
rounding the noninteger optimum dimensions of 29.33 x 5 .87, she knows that m = 5 
or m = 6, and the larger dimension is either 30 or 29. Checking at most four products 
shows that 174 = (5 x 6 - 1 ) (6) is the least flock leader greater than 172, so m = 6 
and f3 = 1 ,  and we are dealing with the first part of the Theorem. Evaluation yields 

Pm = 0; more calculator work reveals that m < k { 1 + J1 - ({3 + 1 ) / (ak) ) , so the 
flock leader is the only member of this flock. The greatest 5-square less than 172, then, 
must be the previous flock leader, which is (5 x 6 - 2) (6) = 168 .  Thus, she should 
fence 1 68 square feet with dimensions 28 x 6. This gives her 2.90 square feet per 
dollar, which is certainly better than any of the other options she had considered. 

A possible extension of the problem is to remove the restriction that a is an integer. 
This would allow us to solve the problem where just one side of the fence, not two 
parallel sides, is more expensive (this case would correspond to a being a half-integer) ; 
also, it could handle more complex situations where, for example, north-south fencing 
is $3 and east-west fencing is $5 .  

An initial analysis of  numerical data (staring at lists of  numbers produced by  a 
brute-force a-squares program) suggests that a noninteger a changes the problem con
siderably. For example, let a = 3/2. Brute force calculations show that 27 = 9 x 3 is 
a 3 /2-square, with a cost of 27 /2; and 30 = 6 x 5 is a 3 /2-square with a cost of 27/2, 
so it belongs to the same flock. However, 28 = 7 x 4 is a 3 /2-square between 27 and 
30, and its cost perimeter is only 26/2, so it does not belong to the same flock. It would 
be very interesting to find a way to characterize these numbers precisely. 

Finally, if anyone wishes to see lists of 3-squares, 9-squares, and 4739-almost
squares, they can be found at the author's  website [2] . Also at that site is the Perl 
script used to generate these lists. 
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PROPOSALS 
To b e  considered for publication, solutions should b e  received by September 7 ,  
2009. 
1816. Proposed by Mehmet Sahin, Ankara University of Science, Ankara, Turkey. 

Let ABC be a triangle with a = BC, b = CA, and c = AB .  Let A'B'C' be another 

triangle with B' C' = .j(i, C' A' = Jb, and A' B' = y'c. Prove that 

sin (�A) sin (�B) sin (�c) = cos A' cos B' cos C' . 

1817. Proposed by Marcos Donnantouni, La Plata, Argentina and Jose H. Nieto, 
Maracaibo, Estado Zulia, Venezuela. 

A TV game show has a format in which contestants are asked questions and give 
answers. Each contestant starts with a score of 0 points. A contestant's score is then 
calculated as follows :  after giving a correct answer, the score is increased by I ; after a 
wrong answer the score is divided by 2. If a contestant responds to n questions, how 
many different scores are possible? (As an example, for n = 3 there are seven possible 
scores : 0, 1 /4, 1 /2, 1 ,  3/2, 2, and 3.) 

1818. Proposed by Cosmin Pohoata, Tudor Vianu National College of Informatics, 
Bucharest, Romania. 

Let n, k, i ,  i t .  i2 , • • •  , ik be positive integers with n :::: i = i 1 + i2 + · · · + ik . Prove that 
2n-i is a factor of 

2: � n � . n (( ) k ( ' )) 
j=O J r=l lr 

We invite readers to submit problems believed to be new and appealing to students and teachers of advanced 
undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical 

information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, 

succinct solution. 
Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a 

separate sheet. 
Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of 

Mathematics, Iowa State University, Ames IA 500l l , or mailed electronically (ideally as a lbT]3X file) to 

ehj ohnst@iastate . edu. All communications, written or electronic, should include on each page the reader's 

name, full address, and an e-mail address and/or FAX number. 
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1819. Proposed by Jody M. Lockhart and William P. Wardlaw, U.S. Naval Academy, 
Annapolis, MD. 

An element a of a ring R is reducible in R if there are elements b and c in R, neither of 
which are units in R, such that a = be. If a is not reducible then we say a is irreducible. 
For each integer m > 1 ,  let Zm [x] denote the ring of polynomials over the ring Zm 
of integers modulo m.  For which integers m > 1 is the polynomial x irreducible in 
Zm [x] ?  

1820. Proposed by Christopher J. Hillar, Texas A&M University, College Station, TX. 
A real positive semidefinite matrix is a symmetric matrix with all eigenvalues non
negative. Prove that if P and Q are real positive semidefinite n x n matrices with 
tr(P Q) = 0, then P Q  = 0. 

Qu ick ies 
Answers to the Quickies are on page 1 52.  
Q989. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania. 

Prove that for - 1  ::::: x < 1 ,  

00 1 ( n xk ( 1 ) ) 1 L - L - - ln ---=- = - - (ln(l - x))2 • 
n= l  n k=l k 1 x 2 

Q990. Proposed by Michael W. Botsko, Saint Vincent College, Latrobe, PA. 

Let f be a differentiable real valued function defined on (a , oo), and suppose that 
limx---.oo f(x) = A,  with A finite. 

a. Is it necessary that limx---.oo f' (x) = 0? 
b. If the answer to part a. is no, is it necessary that limx---.oo f' (x) = 0 if this limit is 

assumed to exist? 

So l ut ions 
An equilateral condition April 2008 

1791. Proposed by Mowaffaq Hajja, Yarmouk University, Irbid, Jordan. 

Let ABC be a triangle with circum center 0 ,  perimeter P ,  and area K .  Prove that if 

BC [ O BC] 1 
P K 

= 3 '  
then A B C  is equilateral. (Here [X Y Z] denotes the area of triangle X Y Z.) 

I. Solution by G.R.A.20 Problem Solving Group, Rome, Italy 
Let a = BC,  b = C A ,  c = AB ,  p = P /2, and let R denote the circumradius of tri
angle ABC. Noting that 3 [  0 BC] = K , it follows from Heron's formula that 

9 ( R + �) ( R - �) · � · � = p (p - a) (p - b) (p - c) . 
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Substituting R = abcj (4K) and rearranging, this becomes 

9a4b2c2 = 64p2 (p - a)2 (p - b)2 (p - c)2 + 36a4 p (p - a) (p - b) (p - c) . (1) 

Substituting p = 3aj2 into ( 1 )  results in 

4b2c2 = (3a - 2b)2 (3a - 2c)2 + 3a2 (3a - 2b) (3a - 2c) . 

Noting that a =  (b + c) /2 and substituting into (2) then gives 

2bc = b2 + c2 • 

Hence a = b = c and the triangle is equilateral. 

II. Solution by Philip Benjamin, Highland Park High School, Highland Park, NJ. 

(2) 

Let a = BC .  Put the triangle in the plane with B = ( -a/2, 0) , C = (aj2, 0) , and 
A =  (x , y) with y > 0. Because BA + AC = 2a , point A lies on the ellipse with foci 
at B and C and major semi-axis of length a .  This ellipse has equation 

x2 y2 
- + -- = 1 . 
a2 3a2j4 

Because [O BC] = Kj3 ,  we conclude that 0 = (0, yj3) . Since OA = OB 

from which 

Because (x , y) also lies on the ellipse, it follows that x = 0 and y = -/3a /2, so triangle 
ABC is equilateral. 

Also solved by George Apostolopoulos (Greece), Herb Bailey, Michel Bataille (France), Berry College Dead 
Poets Society, Jany C. Binz (Switzerland), Bruce S. Burdick, Robert Calcaterra, Minh Can, Chip Curtis, Robert 
L Doucette, John Ferdinands, Dmitry Fleischman, Marty Getz and Dixon Jones, Michael Goldenberg and Mark 
Kaplan, Peter Gressis and Dennis Gressis, Eugen J. lonascu, Richard A. Jacobson, Victor Y. Kutsenok, Kee-Wai 
Lau (China), Charles McCraken, Evangelos Mouroukos (Greece), Ruthven Murgatroyd, Gabriel T. Praajitura, 
Kevin A. Roper, Tou.fic Saad, Jawad Sadek, C. R. Selvaraj, Seshadri Sivakumar, Earl A. Smith, Albert Stadler 
(Switzerland), H. T. Tang, Hansun To, Michael Vowe (Switzerland), Stuart V. Witt, and the proposer. There was 
one solution with no name. 

Prime divisors April 2008 

1792. Proposed by H. A. ShahAli, Tehran, Iran. 

Let N be a positive integer. Prove that there is a positive integer n such that n2 + 3 is 
divisible by at least N distinct primes. 

Solution by John H. Smith, Needham, MA. 
The result is true if n2 + 3 is replaced by any nonconstant polynomial f(n) = 

amnm + am_ 1nm- l + · · · + ao with integer coefficients. We may assume that am > 0, 
and hence that there exists an n0 > 0 such that f(n) is positive and increasing on the 
interval (n0 , oo) . 

It is sufficient to show that if for some n 1 > n0 , f (n 1 ) = P? · · · p�k is divisible by 
exactly k distinct primes then, for some n2 > n 1 . f (n2) is divisible by more than k 

. a· h 1 rt +l 'k+l Th pnmes. 1ven sue an n 1 . et n2 = n 1 + p1 · · · Pk . en 

r ·  r · + l 
Thus for each j ,  1 :=:: j :=:: k, we have P/ l f (n2) but P/ X j (n2) .  Because j(n2) > 

f(n 1 ) = p�1 . . •  p�k it follows that f(n2) has at least k + 1 prime divisors . 
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Also solved by Anurag Agarwal, Brian D. Beasley, Robert Calcaterra, John Christopher, Knut Dale (Norway), 
Gabriel Dospinescu (France) and Marian Tetiva (Romania), Robert L Doucette, Dmitry Fleischman, Kenneth 
W. Fogarty, Marty Getz and Dixon Jones, G.R.A.20 Problem Solving Group (Italy), Christopher Hill, Benjamin 
Hirsch, Eugen J. lonascu and Alin A. Stancu, Tom Jager, Victor Y. Kutsenok, Harris Kwong, Peter W. Lindstrom, 
Arturo Magidin, David E. Manes, Kim Mcinturff, Jose H. Nieto, Gabriel T. Priijiturti, Nicholas C. Singer, Al
bert Stadler (Switzerland), H. T. Tang, Marian Tetiva (Romania), Bob Tamper, and the proposer. There was one 
solution with no name. 

When A2 = A* April 2008 

1793. Proposed by Gotz Trenkler, University of Dortmund, Dortmund, Germany 

Let A be an n x n matrix with complex entries such that A 2 = A* ,  where A* denotes 
the conjugate transpose of A. Show that 

a. rank(A + A*) = rank(A) 

b. In +  A is nonsingular. 

Solution by Eugene A. Herman, Grinnell College, Grinnell, /A. 

b. If Un + A)u = 0, then Au = -u . Hence, after multiplying on the left by A* ,  we 
have 

A* Au = A2 (-u) = -u 

Since all eigenvalues of A* A are nonnegative, we conclude that u = 0 and therefore 
In + A is nonsingular. 

a. Since A +  A* = A +  A2 = Un + A)A and In + A is nonsingular, A + A* and A 
have the same rank. 

Note: In fact, since A + A* = Un + A)A,  A + A* and A have the same null 
space, not just the same nullity. 

Also solved by Michael Andreoli, Michel Bataille, Paul Budney, Robert Calcaterra, Knut Dale (Norway), Luz 
M. DeAlba, Michael Goldenberg and Mark Kaplan, Jeffrey M. Groah, Eugen J. Ionascu and Alin A. Stancu, Tom 
Jager, Victor Y. Kutsenok, Charles Lindsey, Eric Pite (France), Vadim Ponomarenko, Gabriel T. Priijiturii, Yanir 
A. Rubenstein, Nicholas C. Singer, John H. Smith, Albert Stadler (Switzerland), and the proposers. There was one 
solution with no name. 

An exponential inequality April 2008 

1794. Proposed by Dorin Marghidanu, Colegiul National "A. I. Cuza, " Corabia, 
Romania 

Let Xt , x2 , . . .  , Xn ::: e .  Prove that 

xz+ . .  ·+Xn Xn - 1  +xn 
+ x

2 
x2 + · · · + Xn_x

�- l + Xn ::: Xt + 2x2 + · · · + (n - l)Xn- 1  + nXn . 

Solution by Michel Bataille, Rouen, France 
The function f defined by f (x) = (log x)fx is decreasing on [e , oo) . Thus if 
a1 , a2 , . . .  , ak ::: e, then 

and exponentiation gives 

a l +a2 +· · +ak 
al 

a !  ::: al + a2 + . . .  + ak . 
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Thus 

x 1 +x2 +· · ·+xn 
x1 x l :=:: X! + X2 + · · · + Xn 

x2 +x3 + . .  ·+xn 
x2 

x2 :::: X2 + X3 + . . .  + Xn 

Adding these inequalities gives the desired result. 

1 5 1 

Also solved by Robert Calcaterra, Minh Can, Chip Curtis, Knut Dale (Norway), Robert L Doucette, 
Dmitry Fleischman, Marty Getz and Dixon Jones, Eugen J. Ionascu, Tom Jager; Hidefumi Katsuura, Evangelos 
Mouroukos (Greece), Paolo Perfetti, Gabriel T. Prlijiturli, Phillip P. Ray, Toufic Saad, C. R. Selvara and Suguna 
Selvaraj, Albert Stadler (Switzerland), and the proposer. 

A many-to-one function April 2008 

1795. Proposed by Jeff Groah, Montgomery College, Conroe, TX. 
Find a function f : [0, 1 ]  � [0 , 1 ]  such that for each nontrivial interval I s; [0, 1 ] ,  we 
have f(l) = [0, 1 ] .  

I .  Solution by Vadim Ponomarenko, San Diego State University, San Diego, CA. 
Each x E [0, 1 ]  , can be expressed in base 3 :  x = [x0 .x1x2x3 • • •  h , where each x; E 
{0, 1 ,  2} and the representation does not end in an infinite string of 2s. If the base 
three representation has no digits 1 or infinitely many digits 1 among x1 , x2 , • . •  then 
define f(x) = 1 .  (so f( l )  = 1 .) If there are a positive finite number of digits 1 among 
x1 ,  x2 , . • •  , find d so that xd = 1 and xk =/= 1 for k > d, and define 

where 0' = 0, 2' = 1 ,  

and we consider the result as a number in base 2. Each element of [0, 1 )  has a pre image 
in the interval [a , b ] ,  for any a = O.x1 • • •  xd and b = a + 3

d 
, with xd = 1 .  In fact, each 

element of [0, 1 ]  has a preimage in any interval of this type. (Note that f(a + 3d /2) = 
f(O.x1 • • •  xd 1 1  . . .  ) = 1 .) Now, let / be a nontrivial interval. Then there is a k > 0 so 
that [c ,  c + 3k] s; I , for some c = [O.y1 • • •  Ykh , where each Y; E {0, 1 ,  2 } .  We set 
a = c + 3 -k- l and b = a + 3 -k- ! . Then [a , b] is an interval of the desired type, with 
I s;  [a ,  b] C [c , c + 3-k] s; I .  This completes the construction. 

II. Solution by Jerrold W. Grossman, Oakland University, Rochester, MI. 
Let � be the cardinality of U = [0, 1 ] .  The set J of nontrivial subintervals of U has 
cardinality � · � = � .  Viewing � as an ordinal number (and noting that this implies 
that every initial segment of � has strictly smaller cardinality), we have a well-ordering 
Y1 , y2 , . . .  , y,, . . . of U and a well-ordering I1 , h . . .  , I, , . . .  of J .  Now by double 
transfinite induction define f as follows .  For each i E �. for each j E � .  choose a 
number x j E I j that has not yet been assigned a value and set f (x j ) = y; ;  it is possible 
to find such a number because at each stage in the process the set of numbers that have 
so far been assigned a value has cardinality smaller than � and so does not exhaust 
Ij . For any x E U that has not been assigned a value upon completion of this process, 
arbitrarily set f (x) = x. The desired property of f is clear. 

Also solved by Michael Andreoli, Michel Bataille, Tom Beatty, Michael W. Botsko, Paul Budney, Bruce S. Bur
dick, Robert Calcaterra, Elliott Cohen, A. K. Desai and K. V. Thaker; Marty Getz and Dixon Jones, Michael Gold
enberg and Mark Kaplan, Eugen J. Ionascu, Jean-Christophe Laugier (France), Evangelos Mouroukos, Stephen 
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No/tie, Northwestern University Math Problem Solving Group, Paolo Perfetti (Italy), Gabriel T. Priijiturii, 
Nicholas C. Singer, Albert Stadler (Switzerland), Tony Tam, Marian Tetiva (Romania), Dave Trautman, Stuart V. 
Witt, and the proposer. 

Answers 
Solutions to the Quickies from page 1 48. 
A989. Because 1 + t + . · . + tn- l = \�� , we have, by integration, 

n xk 1x tn L - = - - dt - ln( l  - x) .  
k=l  k 0 1 - t 

Thus 

00 1 ( n Xk ( 1 ) ) 00 1 1x tn 1x 1 ( 00 tn ) L - L - - In - = - L - - dt = - - L - dt 
n= l  n k= l k 1 - X n= l  n 0 1 - t 0 1 - t n= l  n 1x ln( l  - t) 1 2 = dt = - - (ln(l - x)) . 

0 1 - t 2 

Note that the interchange of the order of summation and integration is valid because 
L_';.1 tn jn = - ln(l - t) converges on - 1  ::::: t < 1 ,  so the series converges uniformly 
on any closed interval in ( - 1 ,  1 ) .  For x = - 1 ,  the desired equality follows from the 
Abel summation by parts formula. 

A990. 

a. The answer is no. As an example, let 

sin(2x2) 
f(x) = --x 

and note that limx--c>oo f(x) = 0. On the other hand, 

, 4x2 cos(2x2) - sin(2x2) 
f (x) = 

2 
, 

X 

so limx--c>oo f' (x) does not exist. 
b. The answer is yes . To prove this, let x > a . By the Mean Value Theorem there is a 

Cx E (x , x + 1 )  such that 

f (x + 1 ) - f(x) = f' (cx ) .  

Taking the limit of both sides as x --+ oo, and noting that ex --+ oo as x --+ oo, we 
find 

0 = A - A =  lim f'(cx )  = lim f' (x ) ,  x�oo x-+oo 

where the last equality holds because limx--c>oo f' (x) exists. 
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Vaaler, Leslie Jane Federer, and James W. Daniel, Mathematical Interest Theory, 2nd ed. , MAA, 
2009; xvii + 475 pp, $89.95 ($7 1 .95 to MAA members) .  ISBN 978-0-88385-754-0. Vaaler, 
Leslie Jane Federer, Student Solutions Manual for Mathematical Interest Theory, MAA, 2009; 
ix + 107 pp, $34 ($26.95 to MAA members). ISBN 978-0-88385-755-7. 

In my December 2008 colunm, I asked about the role of mathematics in the economic crisis. 
Now the question is, What will the economic crisis do to student interest in studying financial 
mathematics? In Spring 2008 I taught a semester course on that topic from the first edition of this 
textbook. The book deals with the comforting part of financial mathematics that is deterministic: 
It ignores uncertainty, variability, and risk, assuming that all payments of an annuity or a loan 
will be made and be made on time (don't laugh too hard-that's the way that it's supposed to 
happen). Yet the subject, and its presentation in this book, is not for the faint of heart. Solving 
the problems requires working systematically from first principles to arrive at expressions to 
evaluate; instructor and students must recognize and remember a large number of symbols and 
their corresponding formulas, as well as develop facility with TI's Business Analyst II Plus 
calculator; and calculus is used for a few topics .  The book does not cover fully the current 
syllabus for the Society of Actuaries exam in Financial Mathematics. 

Benjamin, Arthur T. , and Ezra Brown (eds.) ,  Biscuits of Number Theory, MAA, 2009; xiii + 
3 1 3  pp, $62.50 (members: $49.95) .  ISBN 978-0-88385-340-5. 

A biscuit: "not too big, easily digested, and makes you feel all warm and fuzzy when you're 
through." This "box" of "biscuits" of number theory contains 40 articles reprinted mostly from 
MAA journals (plus one original contribution). The articles are grouped by topic, each in
troduced by a short essay:  arithmetic; primes ; irrationality and continued fractions ; sums of 
squares and polygonal numbers; Fibonacci numbers; number-theoretic functions ; and elliptic 
curves, cubes, and Fermat's Last Theorem. Fortunately, undergraduate courses in number the
ory are not burdened by a preordained syllabus. The articles here are rich in ideas without being 
demanding of background; they could be either starting points for such a course or departure 
points from it to other exciting destinations. 

Brummelen, Glen Van, The Mathematics of the Heavens and the Earth: The Early History 
of Trigonometry, Princeton University Press, 2009; xvii + 329 pp, $39.50. ISBN 978-0-691 -
1 2973-0. 

Apart from a work in German a century ago and one in Russian in 1990, this is the first modern 
book-length history of trigonometry. This volume covers developments through 1550 (Coperni
cus 's heliocentric model is the breakpoint) ; a projected sequel will continue from then. Because 
trigonometry arose in part from astronomy, some acquaintance with the concepts and termi
nology of spherical astronomy is needed; author Van Brummelen provides a short introduction 
before embarking on his tale. Egypt and Babylonia come in for brief discussion before major 
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sections on Greece, India, Islam, and the West, including methods to make trigonometric tables. 
The book is replete with figures and short translations (with explanations) of original sources. 

Hopkins, Brian (ed.), Resources for Teaching Discrete Mathematics: Classroom Projects, His
tory Modules, and Articles, MAA, 2009; xiv + 323 pp, $54.95 (P) (members: $44.95). ISBN 
978-0-88385- 1 84-5.  

Courses in discrete mathematics have not become as popular as calculus nor have they had 
the 300 years to settle into a fixed syllabus. Desire to include specific topics for one major 
constituency, computer science students, has distinguished courses in "discrete structures" from 
others with more specifically mathematical content, such as combinatorics and graph theory. 
Meanwhile, other discrete mathematics courses are designed mainly to introduce students to 
proof, so that the actual mathematical content is secondary. This book strives to offer something 
for every kind of discrete mathematics course. It contains 19 classroom-tested learning modules, 
each designed for one to four class periods. Each module includes notes for the instructor (with 
references), reproducible worksheets for students, solutions, and sometimes open questions. 
Some modules introduce a topic, others extend one, and some go into applications and the use 
of technology. Additionally, there are 1 1  projects on the history of a topic, each intended to 
extend over a longer period of time, plus five further articles, including two on pedagogy. 

Smullyan, Raymond M., Logical Labyrinths, A K Peters, 2009; viii + 327 pp, $49. ISBN 978-
0-56881 -4343-8 .  

Author Smullyan is known for his research in mathematical logic and his exposition of the 
subject, but more widely for his books of logical puzzles and paradoxes :  What Is the Name 
of This Book? ( 1978), The Lady or the Tiger? ( 1 982), To Mock a Mockingbird . . .  ( 1985), and 
several more since. Those books feature liars and truth-tellers, knights and knaves, and lots of 
self-referentialism. This new book combines the recreational aspect with serious mathematical 
logic : It starts with puzzles, tours propositional logic, gets to predicate logic one-third of the 
way through the book, and then takes a detour to infinity and Konig's  lemma. In the last third, 
it gets into serious results in first-order logic, ending with GOdel incompleteness. Most of the 
development is through problems, whose solutions are provided in the back. The author asserts, 
"Mter having read this book, you will have the knowledge of a typical one-semester graduate 
course in symbolic logic, and you will then have the preparation to read . . . much of the general 
literature in the field." That is likely true for a motivated reader who reasons carefully, solves 
most of the problems, and internalizes the necessary notation. 

Shortz, Will, A new puzzle challenges math skills, New York Times (9 February 2009) C6, http : 

I /www . nyt ime s . com/2009/02/09/art s /09ken . html . Gaffney, Matt, I was told there would 
be no math: Will KenKen be the next Sudoku or a passing puzzle fad?, http : I /www . s late . 

com/id/22 1 1 595.  KenKen: The world's most ADDictive puzzle ! ,  http : I /www . kenken . com/. 

Inspiration for mathematics can come from unexpected sources, but seizing the opportunity is 
another matter. In October 2004, a fellow American visitor at the University of Augsburg in 
Germany, a colleague in American literature, showed me a German magazine with a single 
page of puzzles that involved filling numbers into grids of various sizes. Did I know where he 
could get more such puzzles, and was there mathematical theory that would help solve them? 
I couldn't  help him on either count. One month later, unknown to either of us, similar puzzles 
began to appear daily in The Times of London. I had missed an opportunity to get in on the 
ground floor of research in sudoku(not to mention lucrative puzzle and how-to books). Who 
knew that it would become a craze? Now an heir apparent has emerged in KenKen (Japanese 
for "cleverness squared"), invented by Japanese teacher Tetsuya Miyamoto. Again pioneered 
by The Times, KenKen now appears in two sizes in the New York Times next to the crossword 
puzzle. Like sudoku, KenKen requires filling in digits without repetition in a row or column; 
unlike sudoku, certain boxes must contain digits fulfilling an arithmetic condition (e.g., their 
product must be 60). As commentator Gaffney says, "The marketing wheels, greased by the 
promise of Sudoku-style riches, are already in motion." Indeed, puzzle editor Shortz has written 
a large proportion of the 50 or so books on KenKen that are already available. 
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1 .  Prove that for each positive integer n ,  there are pairwise relatively prime integers 
k0 , k1 ,  . • .  , kn , all strictly greater than 1 ,  such that k0k1 · • · kn - 1 is the product of 
two consecutive integers. 

2. Let ABC be an acute, scalene triangle, and let M, N, and P be the midpoints 
of BC, CA,  and AB ,  respectively. Let the perpendicular bisectors of AB and AC 
intersect ray A M  in points D and E respectively, and let lines B D and C E intersect 
in point F, inside of triangle ABC. Prove that points A,  N, F ,  and P all lie on one 
circle. 

3. Let n be a positive integer. Denote by Sn the set of points (x ,  y) with integer coor
dinates such that 

lx l + !y + � � < n .  

A path i s  a sequence of distinct points (x 1 ,  y1 ) , (x2 , y2) , • . .  , (Xt , Yt ) in Sn such that, 
for i = 2, . . . , £ , the distance between (x; ,  y; ) and (x; _ 1 ,  Yi - 1 ) is 1 (in other words, 
the points (x; ,  y; ) and (x; _ , , y; _ , )  are neighbors in the lattice of points with integer 
coordinates). 

Prove that the points in Sn cannot be partitioned into fewer than n paths (a par
tition of Sn into m paths is a set P of m nonempty paths such that each point in Sn 
appears in exactly one of the m paths in P). 

4. Let P be a convex polygon with n sides, n :::: 3 .  Any set of n - 3 diagonals of P 
that do not intersect in the interior of the polygon determine a triangulation of P 
into n - 2 triangles. If P is regular and there is a triangulation of P consisting of 
only isosceles triangles, find all the possible values of n .  

5 .  Three nonnegative real numbers r1 , r2 , r3 are written on  a blackboard. These num
bers have the property that there exist integers a1 , a2 , a3 , not all zero, satisfying 
a1 r1 + a2r2 + a3r3 = 0. We are permitted to perform the following operation: find 
two numbers x ,  y on the blackboard with x � y, then erase y and write y - x in 

1 5 5 
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its place. Prove that after a finite number of such operations, we can end up with at 
least one 0 on the blackboard. 

6. At a certain mathematical conference, every pair of mathematicians are either 
friends or strangers. At mealtime, every participant eats in one of two large dining 
rooms. Each mathematician insists upon eating in a room which contains an even 
number of his or her friends. Prove that the number of ways that the mathematicians 
may be split between the two rooms is a power of two (i .e . ,  is of the form 2k for 
some positive integer k). 

Solutions Following are solution sketches with the essential ideas for each problem. 
For interested readers, detailed solutions with figures and multiple approaches are at 
the website of the MAA American Mathematics Competitions: http : I /www . unl . edu/ 

amc/e- exams /e8-usamo/archiveusamo . shtml .  The website has solutions and general
izations developed by the USAMO Committee and the contestants. 

1 .  We proceed by induction. The case n = 1 is clear with k0 = 3 and k1 = 7. As
sume now that for n > 1 there are pairwise relatively prime integers 1 < k0 < k1 < 
· · · < kn such that k0k1 · • • kn - 1 = an (an - 1 ) ,  for some positive integer an . Then 
choosing kn+ 1 = a; + an + 1 yields 

koki . . · kn+i = (a; - an + l ) (a; + an + 1) = a� +  a; +  1 ,  

so k0k1 • • · kn+i  - 1 is the product of consecutive integers a; and a; + 1 .  Moreover, 

gcd(kokl · · · kn , kn+ i )  = gcd(a; - an + 1 ,  a; +  an + 1) = 1 ,  

hence k0 , k1 , • . .  , kn+i are pairwise relatively prime. 
Titu Andreescu suggested this problem. 

• 

2. Invert the figure about a circle centered at A .  Let X' denote the image of the point 
X under this inversion. Find point F{ so that AB' F{ C' is a parallelogram Let Z' 
denote the center of this parallelogram. Note that t;.BAC "' t;.C' AB' and t;.BAD "' 
t;.D' AB' .  Because M is the midpoint of BC and Z' is the midpoint of B'C', we also 
have t;.BAM "' t;.C' AZ' .  Thus 

LAF{B' = LF{AC' = L Z'AC' = LMAB = LDAB = LDBA = LAD'B' . 

Hence quadrilateral AB' D' F{ is cyclic. By a similar argument, quadrilateral 
AC' E' F{ is cyclic . Because the images under the inversion of lines BDF and 
CFE are circles that intersect in A and F', it follows that F{ = F'. 

Next note that B', Z', and C' are collinear and are the images of P', F', and N', 
respectively, under a homothety centered at A and with ratio 1 /2. It follows that P',  
F', and N' are collinear, and then that the points A,  P,  F, and N lie on a circle. • 
Zuming Feng suggested this problem. Gabriel Carroll suggested the given solution. 

3. Color the points in Sn as follows: 
(a) if y :::: 0, color (x ,  y) white if x + y - n is even and black if x + y - n is 

odd; 
(b) if y < 0, color (x ,  y) white if x + y - n is odd and black if x + y - n is 

even. 
Consider a path (xi , YJ ) , (xz , Yz) , . . .  , (xe , Ye ) in Sn . A pair of successive points 

(x; _ 1 , y; _ 1 )  and (x; , y; ) in the path is called a pair of successive black points if both 
points in the pair are colored black. 

Suppose now that the points of Sn are partitioned into m paths and the total 
number of successive pairs of black points in all paths is k. By breaking the paths 
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at each pair of successive black points, we obtain k + m paths in each of which 
the number of black points exceeds the number of white points by at most one. 
Therefore the total number of black points in Sn cannot exceed the number of white 
points by more than k + m .  On the other hand, the total number of black points in 
Sn exceeds the total number of white points by exactly 2n (there is exactly one more 
black point in each row of Sn) .  Therefore 2n ::: k + m.  There are exactly n adjacent 
black points in Sn (call two points in Sn adjacent if their distance is 1 ) ,  namely 
the pairs (x , 0) and (x , - 1 ) ,  for x = -n + 1 ,  -n + 3 ,  . . .  , n - 3 ,  n - 1 .  Therefore 
k ::: n (the number of successive pairs of black points in the paths in the partition 
of Sn cannot exceed the total number of adjacent pairs of black points in Sn) and so 
n ::: m .  • 
Gabriel Carroll suggested this problem. 

4. The answer is n = 2m+l + 2k , where m and k are nonnegative integers . 

LEMMA . Let Q = Qo Q l . . .  Q1 be a convex polygon with Qo Q l = Q 1 Q2 = 
· · · = Q1_ 1  Q1 • Suppose that Q is cyclic and its circumcenter does not lie in its 
interior. If there is a triangulation of Q consisting only of isosceles triangles, then 
t = 2a, where a is a positive integer. 

Let P = P1 P2 • • •  Pn denote the regular polygon. There is an isosceles triangle in 
the triangulation such that the center of P lies within the boundary of the triangle. 
Without loss of generality, we may assume that P1 P; Pi , with P1 P; = P1 Pi (that 
is, Pi = Pn-i+2) ,  is this triangle. Applying the Lemma to the polygons P1 . . .  P; , 
P; . . .  Pi , and Pi . . .  P1 . we conclude that there are 2m - 1 ,  2k - 1 ,  2m - 1 (where 
m and k are nonnegative integers) vertices in the interiors of the minor arcs lfPi , ifjii , fi7Ph respectively. (In other words, i = 2m + 1 ,  j = 2k + i . ) Hence 

n = 2m - 1 + 2k - 1 + 2m - 1 + 3 = 2m+l + 2k , 

where m and k are nonnegative integers. The above discussion can easily lead to a 
triangulation consisting of only isosceles triangles for n = 2m+l + 2k . • 
Gregory Galperin suggested this problem. 

5. If two of the a; vanish, say a2 and a3 , then r1 must be zero and we are done. Assume 
at most one a; vanishes. If any one a; vanishes, say a3 , then r2jr1 = -ada2 is a 
nonnegative rational number. Write this number in lowest terms as p I q ,  and put r = 
r2jp = ri fq . We can then write r1 = qr and r2 = pr .  Performing the Euclidean 
algorithm on r1 and r2 will ultimately leave r and 0 on the blackboard. Thus we are 
done again. 

Thus it suffices to consider the case where none of the ai vanishes. We may 
also assume none of the r; vanishes, as otherwise there is nothing to check. In this 
case we will show that we can perform an operation to obtain r� , r� , r� for which 
either one of r� , r� , r� vanishes, or there exist integers a� , a� , a� , not all zero, with 
a� r� + a�r� + a�r� = 0 and 

After finitely many steps we must arrive at a case where one of the a; vanishes, in 
which case we finish as above. 

If two of the r; are equal, then we are immediately done by choosing them as 
x and y .  Hence we may suppose 0 < r1 , r2 < r3 • Since we are free to negate all 
the a; , we may assume a3 > 0. Then either a1 < -a3j2 or a2 < -a3j2 (other
wise a1 r1 + a2r2 + a3r3 > (a1 + a3 j2)r1 + (a2 + a3 j2)r2 > 0) . Without loss of 
generality, we may assume a1 < -a3j2. Then choosing x = r1 and y =  r3 gives 
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the triple (ri , r� . r� ) = (r� o r2 , r3 - r1 ) and (ai , a� , a� ) = (a! + a3 , az , a3 ) .  Since 
a1 < a1 + a3 < a3 j2 < -a1 , we have l ai I = I a ! + a3 1 < la1 l and hence this oper
ation has the desired effect. • 
Kiran Kedlaya suggested this problem. 

6. Let n be the number of participants at the conference. We proceed by induction 
on n .  

If n = 1 ,  then we have one participant who can eat in either room; that gives us 
total of 2 = 2 1 

options .  
Let n =::: 2. The case in which some participant, P,  has no friends is trivial. In 

this case, P can eat in either of the two rooms, so the total number of ways to split 
n participants is twice as many as the number of ways to split (n - 1 )  participants 
besides the participant P .  By induction, the latter number is a power of two, 2k , 
hence the number of ways to split n participants is 2k+l . So we assume that every 
participant has at least one friend. We consider two different cases separately: 

Case 1 :  Some participant, Z, has an odd number of friends. 
Then the claim is that the number of possible seatings is unchanged after remov

ing Z and reversing the relationship between X and Y in each pair (X, Y) of Z ' s  
friends. 

Case 2:  Each participant has an even number of friends. 
In this case, each valid split of participants in two rooms gives us an even number 

of friends in either room. • 
Sam Vandervelde suggested this problem. 

2008 Olympiad Results The top twelve students on the 2004 USAMO were (in 
alphabetical order): 

David Benjamin 1 1  William Henry Harrison High School West Lafayette IN 
TaoRan Chen 12 Bayside High School Freshmeadows NY 
Paul Christiano 12  The Harker School San Jose CA 
Sam Elder 12 Poudre High School Fort Collins co 
Shaunak Kishore 12 Unionville-Chaddsford High School West Chester PA 
Delong Meng 1 1  Baton Rouge Magnet High School Baton Rouge LA 
Evan O'Domey 9 Venture High School Berkeley CA 
Qinxuan Pan 1 1  Thomas S Wootton High School Gaithersburg MD 
David Rolnick 1 1  Home School Rupert VT 
Colin Sandon 12  Essex High School Essex Junction VT 
Krishanu Sankar 12 Horace Mann High School Hastings on Hudson NY 
Alex Zhai 12 University Laboratory High School Champaign IL 

Colin Sandon and Evan O'Dorney were the winners of the Samuel Grietzer-Murray 
Klarnkin Award, given to the top scorers on the USAMO. Colin Sandon and Evan 
O'Dorney tied for first place and were awarded college scholarships of $10 ,000 by the 
Akamai Foundation. Krishanu Roy Sankar and Qinxuan Pan tied for second place and 
were awarded scholarships of $7,000 by the Akamai Foundation. Delong Meng and 
Shaunak Kishore tied for throed place and were awarded scholarships of $5 , 000 by 
the Akamai Foundation. The Clay Mathematics Institute Award for a solution of out
standing elegance and carrying a $5 , 000 cash prize was presented to Evan O'Dorney 
for his solution on Problem 2. 



New from the 
Mathematical Association of America 

The Contest Problem Book VIII 
American Mathematics Competitions (AMC 10) 2000-2007 

J. Douglas Faires & David Wells 

For more than 50 years, the Mathematical Associa tion of America 
has been engaged in the construction and administration of chal
lenging contests for students in American and Canadian high 
schools. The problems on these contests are constructed in the hope 
that all high school students interested in mathematics will have 
the opportunity to participate in the contests and wil l  find the 
experience mathematically enriching. These contests are intended 

for students at all levels, from the average student at a typical school who enjoys mathe
matics to the very best students at the most special school .  

There are 350 problems from the first 14 contests included in this collection. A Problem 
Index at the back of the book classifies the problems into the following major subject 
areas: Algebra and Arithmetic, Sequences and Series, Triangle Geometry, Circle Geometry, 
Quadrilateral Geometry, Polygon Geometry, Counting Coordinate Geometry, Sol id 
Geometry, Discrete Probability, Statistics, Number Theory, and Logic. The major subject 
areas are then broken down into subcategories for ease of reference. The Problems are 
cross-referenced when they represent several subject areas. 

Problem Books • Catalog Code: CPS • 220 pp., Paperbound, 2008 • ISBN: 978-0-88385-825-7 
List: $49.95 • MAA Member: $39.95 

The Contest Problem Book IX 
American Mathemaitcs Competitions (AMC 12) 2001-2007 
David Wells  & J. Douglas Faires 

This is the ninth book of problems and solutions from the 
American Mathematics Competitions (AMC) contests . It chronicles 
325 problems from the 13 AMC 12 contests given in the years 2001 
through 2007. The authors were the joint directors of the AMC 1 2  
and AMC 1 0  competitions during that period . 

A Problem Index at the back of the book classifies the problems 
into the subject areas of Algebra, Arithmetic, Complex Numbers, 
Counting Functions, Geometry, Graphs, Logarithms, Logic, Number Theory, Polynomials, 
Probabil ity, Sequences, Statistics, and Trigonometry. A problem that uses a combination of 
these areas is listed miltiple times. 

The problems on these contests are posed by members of the mathematical community in 
the hope that all secondary school students will have an opportunity to participate in 
problem-solving and enriching mathematics experiences. 

Problem Books • Catalog Code: CP9 • 220 pp., Paperbound, 2008 • ISBN: 978-0-88385-826-4 
List: $49.95 • MAA Member: $39.95 

Order your copy today! 
1 .800.331.1622 • www.maa.org 



/� The Mathematical Association of America 
"W and Zala Films presents: 

The Road to the World's Toughest Math 

A film by George Paul Csicsery 

Hard Problems is about the extraordinary gifted 
students who represented the United States in 
2006 at the world's  toughest math competi
tion- the International Mathematical 
Olympiad (IMO) . I t  is  the story of six 
American high school students who compet-

ed with 500 others from 90 countries in Ljublijana, Slovenia.  
The film shows the dedication and perseverance of these remarkably 
talented students, the rigorous preparation they undertake, and the joy 
they get out of solving challenging math problems. It  captures the spir
it that infuses the mathematical quest at the highest level . 

Funding for Hard Problems was provided by a grant from The Penn Oberlander Fa m i l y  
Foundation a n d  El l ington Management Grou p, L.L.C. 

Featu re : 82 minutes / Classroom version : 45 minutes 

Bonus Featu res:  (52 m i n u tes) 
* Mathematicians in  Finance 
* Fam i l ies and School ing, 
* Girls at the IMO 
* H istory of the IMO 
* USA and IMO Olympiad (Problems and Answers 2006-2007---pd f) . 

Catalog Code: H PR • DVD, 90 minutes, Color, 2008 • IBS : 978-0-88385-902-5 
List :  $24.95 • MAA Member: $ 1 9 .95 

Pri ce to col leges inclused performance rights: $99 .00 
A charge of $4.50 wi l l  be added for shipping and handling 

Order your copy today! 
1 .8o0.331.1622 • www.maa.org 
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Is Mathematics 
Inevitable? 
A Miscellany 
Underwood Dudley 

This is a collection of gems from 
the l i terature of m a thematics that 
shine as brightly today as when 
they first appeared in print. They 
deserve to be seen and a d m i red . 

The selections include two oppos
ing views on the pu rpose of mathe
m a ti cs, The Strong Law of Smal l 
Numbers, the treatment of ca l cu l u s  

in the 1 771 Encyclopaedia Brita n n ica, several proofs that  the number o f  
legs o n  a horse i s  infinite, a deserved refu tation of the ri d i cu l ou s  
Euler-Diderot anecdote, the real story of  Jt a n d  the Indiana 
Legislature, the reason why Theodoru s  stopped proving that  sq u a re 
roots were i rrational when he got to m, an excerpt from 
Mathematics Made Difficult ,  a gl i m pse into the mind of a ca l cu l at ing 
prodigy . . . . There wil l  be something of interest here for a lmost anyone 
interested in mathematics.  

Underwood Dudley is the bestsell ing author of: Mathema tical Cranks, 
Nu merology, and the Trisectors .  He has an Erdos nu mber of 1 .  

Spectrum • Catalog Code: IMI • 1 60 pp. ,  Hardbou nd, 2007 • 978-0-88385-566-9 
List: $56.95 • MAA Member: $45 .50 

Order your copy today! 
www.maa.org 
1.800.JJ1.1622 
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